###
计算机系统应用:2020,29(6):230-234
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于DE-BP神经网络的室内热舒适评价方法
(贵州大学 计算机科学与技术学院, 贵阳 550025)
Evaluation Method of Indoor Thermal Comfort Based on DE-BP Neural Network
(College of Computer Science and Technology, Guizhou University, Guiyang 550025, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 138次   下载 118
投稿时间:2019-09-26    修订日期:2019-10-22
中文摘要: 本文从智能家居角度研究室内热舒适, 分析热舒适评价方式PMV, 指出其部分参数在智能家居场景中获取困难. 提出在忽略风速和平均辐射温度的情况下, 引入气候和环境特征来拟合PMV公式. 研究使用经过差分进化算法(Differential Evolution, DE)优化后的BP神经网络算法(DE-BP)来建立拟合模型, DE算法优化神经网络的参数, 神经网络训练使用动量加速的随机梯度下降算法, 且增加了仿射变换的标准化层和L2正则化. 测试结果显示模型在收敛速度、稳定性和泛化性能上比传统BP神经网络更优,在较小误差范围内可应用于计算热舒适度的系统中, 降低其输入参量难度.
中文关键词: 智能家居  PMV  热舒适  DE-BP神经网络
Abstract:The study researches indoor thermal comfort from the perspective of smart home, analyzes the thermal comfort evaluation method of PMV, and points out that some of its parameters are difficult to obtain in the smart home scene. The study proposes to introduce the climatic and environmental characteristics to fit the PMV formula while ignoring wind speed and average radiant temperature. The research uses BP neural network algorithm optimized by Differential Evolution (DE-BP) to establish a fitting model, DE algorithm optimizes parameters of neural network, neural network training uses momentum-accelerated stochastic gradient descent algorithm, and adds the normalization layer and L2 regularization of the affine transformation. The test results show that the model is better than the traditional BP neural network in terms of convergence speed, stability, and generalization performance, and can be used within a small error range. It is applied to the system for calculating thermal comfort and reduces the difficulty of input parameters.
文章编号:7481     中图分类号:    文献标志码:
基金项目:贵州大学青年教师科研基金(贵大自青基合字201304)
引用文本:
翁虎,何勇,梁健.基于DE-BP神经网络的室内热舒适评价方法.计算机系统应用,2020,29(6):230-234
WENG Hu,HE Yong,LIANG Jian.Evaluation Method of Indoor Thermal Comfort Based on DE-BP Neural Network.COMPUTER SYSTEMS APPLICATIONS,2020,29(6):230-234

用微信扫一扫

用微信扫一扫