基于综合赋权和可拓理论的协作企业优选
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2017YFB1400303)


Cooperative Enterprise Optimization Based on Comprehensive Weighting and Extension Theory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为给汽车售后服务供应链云平台的核心企业选择优秀的协作企业,根据云平台不同核心企业对协作企业有不同的要求和标准,以及待评价协作企业的客观特征,采用基于层次分析法和模糊粗糙集法相结合的综合赋权法确定各协作企业评价指标的权重系数,用层次分析法确定主观权重,用模糊粗糙集法确定客观权重,再集成主、客观权重得到综合权重系数;最后基于可拓判别法对评价对象进行优度评价,结果为各评价对象的等级划分和优劣顺序.以汽车售后服务供应链云平台的售后服务商实际业务数据为实例进行对比分析,结果证明了方法的有效性和可行性,且较优于其它评价方法.

    Abstract:

    Different core companies have different requirements and standards for the collaborative enterprises associated with the cloud platform, and the collaborative enterprises to be evaluated have different objective features. In order to select the best collaboration companies for the core enterprises of the after-sales automotive service supply chain cloud platform, the weight coefficient of the evaluation index of each cooperative enterprise is determined by the comprehensive weighting method based on the combination of the analytic hierarchy process method and the fuzzy rough set method. The subjective weight is determined by the analytic hierarchy process, and the objective weight is determined by the fuzzy rough set method. The comprehensive weight coefficient is achieved by reintegrating the main and objective weights. Finally, based on the extension discriminant method, the evaluation object is evaluated by the degree of goodness. The result is the ranking of each appraisal object and the order of the advantages and disadvantages. The actual service data of the after-sales service supply chain cloud service platform for the after-sales service is used as an example for comparative analysis. The results demonstrate the effectiveness and feasibility of the method, which are superior to other evaluation methods.

    参考文献
    相似文献
    引证文献
引用本文

杨静雅,孙林夫,吴奇石.基于综合赋权和可拓理论的协作企业优选.计算机系统应用,2019,28(4):18-24

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-22
  • 最后修改日期:2018-11-12
  • 录用日期:
  • 在线发布日期: 2019-03-29
  • 出版日期:
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号