基于改进Faster RCNN的工业机器人分拣系统
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重大科技专项(2017ZX04018001-003)


Industrial Robots Sorting System Based on Improved Faster RCNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 增强出版
  • |
  • 文章评论
    摘要:

    传统的分拣作业无法伴随工作环境的变化进行相应的调整,针对此种不足,出现了基于机器视觉的分拣机器人的相关研究,通过将图像处理和特征工程技术引入视觉模块,使得分拣系统能适时的调整.不同于这些方法,本研究基于实验室的工业分拣系统,将深度学习方法应用其中.通过将Faster RCNN检测算法引入视觉模块并对区域提取网络RPN进行相关改进,加快Faster RCNN模型的检测过程,使得该系统满足工业的实时性要求.Faster RCNN作为一种端到端的方法,能自动对输入图像生成更具表达力的特征,对相应目标提取相应特征,这避免了人工设计特征,它的特征自动生成能力使其能适用于各种场景,这提升了工业分拣机器人的环境适应能力.

    Abstract:

    Traditional sorting operation can not be adjusted with the change of working environment. In view of this shortcoming, a sorting robot is researched based on machine vision. By introducing image processing and feature engineering technology into the visual module, the sorting system can be adjusted in time. Unlike these methods, this research is based on the industrial sorting system in the laboratory and applies the deep learning method to it. By introducing faster RCNN detection algorithm into visual module and improving of Region Proposal Network (RPN), the detection process of faster RCNN model is accelerated, so that the system meets the real-time requirements of industry. faster RCNN, as an end-to-end method, can automatically generate more expressive features for input images and extract corresponding features for corresponding targets. This avoids the manual design features. Its automatic feature generation ability makes it suitable for various scenarios, which improves the environmental adaptability of industrial sorting robots.

    参考文献
    相似文献
    引证文献
引用本文

孙雄峰,林浒,王诗宇,郑飂默.基于改进Faster RCNN的工业机器人分拣系统.计算机系统应用,2019,28(9):258-263

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-06
  • 最后修改日期:2019-04-02
  • 录用日期:
  • 在线发布日期: 2019-09-09
  • 出版日期:
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号