神经网络技术在高铁站多联机空调节能控制中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2018YFC0705000)


Application of Neural Network Technology in Energy-conservation Control of Multi-connected Air Conditioner in High-speed Railway Station
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文基于神经网络技术设计空调控制软件系统,对传统人工控制模式和神经网络控制器进行对比研究.首先利用Energy Plus仿真软件建立真实高铁站建筑及其多联机空调系统模型,对该空调系统设置424种工况完成了一整年运行仿真,然后从百万条仿真数据中抽取PMV (predicted mean vote,预测平均投票)热舒适度和能耗优秀的数据训练神经网络控制器,最后用JavaEE技术开发了该高铁站空调控制软件原型系统并利用Energy Plus仿真数据以及机器学习预测模型模拟实现了空调动态控制.实验结果表明,在冬季和夏季典型工况条件下神经网络控制器比人工固定设置空调参数更加节能.

    Abstract:

    In this study, air conditioning control software is designed with neural network technology, and the traditional manual control mode and neural network controller are compared. First, Energy Plus is used to build a real high-speed railway station building and its multi-connected air conditioning system, with 424 working conditions of the air conditioning system set up to complete the operation simulation for a whole year. Then the neural network controller is trained with data having excellent predicted mean vote (PMV)-based thermal comfort and energy consumption which are extracted from millions of simulation data. Finally, the prototype system of air conditioning control software for the high-speed railway station is developed with Java Enterprise Edition (JavaEE), and the dynamic control of air conditioners is realized by using Energy Plus simulation data and simulation with a machine learning prediction model. The simulation results based on this prototype software system show that the intelligent controller can reduce energy consumption in comparison with manual control based on fixed settings under typical working conditions in winter and summer.

    参考文献
    相似文献
    引证文献
引用本文

牛茜,蒋琴,王瑶,赵宏宇,陈彦如.神经网络技术在高铁站多联机空调节能控制中的应用.计算机系统应用,2022,31(1):303-308

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-22
  • 最后修改日期:2021-05-19
  • 录用日期:
  • 在线发布日期: 2021-12-17
  • 出版日期:
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号