• 当期目录
  • 优先出版
  • 过刊浏览
  • 点击排行
  • 下载排行
  • 综述文章
    快速检索
    过刊检索
    全选反选导出
    显示模式:
    2023,32(5):1-10, DOI: 10.15888/j.cnki.csa.009086
    [摘要] (258) [HTML] (148) [PDF 1.78 M] (266)
    摘要:
    注意力不能集中是一种注意力障碍, 该现象普遍存在于青少年中, 这直接影响人们的学习和工作效率. 传统的注意力检测方法大多依赖对表情、姿势等行为的观察, 难以客观精准地反映注意力情况. 随着生理检测技术的迅猛发展, 基于脑电信号的注意力检测近年来受到极大的关注. 然而, 相关研究仍存在检测准确率不高的问题. 本研究收集了155位大学生在注意力集中、注意力非集中和放松3种状态下的脑电信号, 并基于信号的小波特征、微分熵特征及功率谱特征, 采用多种机器学习方法对3种注意力状态进行了识别. 结果表明, 脑电信号的小波特征, 微分熵特征及功率谱特征可以有效区分被试的注意力状态, 且基于对称双通道特征的平均准确率为(80.84±3)%, 其检测精度明显高于基于单通道特征的检测精度.
    2023,32(5):11-19, DOI: 10.15888/j.cnki.csa.009063
    [摘要] (141) [HTML] (82) [PDF 4.09 M] (227)
    摘要:
    地貌晕渲是大尺度战场仿真中的重要一环, 针对现有的地貌晕渲技术在细节处纹理特征不明显的问题, 提出了一种结合高程曲率和环境光遮蔽的大尺度战场地貌晕渲增强方法. 第1步, 通过分析数字高程数据的曲率属性生成地形曲率图, 曲率图与卫星影像叠加可以突出显示地貌特征线. 第2步, 提出一种基于深度可分离卷积的环境光遮蔽计算方法, 能够增强战场地形在沟壑处的视觉表现. 最后将曲率图、环境光遮蔽与卫星影像三者融合生成实时地貌晕渲效果. 实验表明, 本文方法可以在较低级别的全球卫星影像上呈现更好的视觉效果, 使得观察者在把握三维地形整体走势的同时, 能进一步分析地貌细节处的纹理特征.
    2023,32(5):20-27, DOI: 10.15888/j.cnki.csa.009062
    [摘要] (201) [HTML] (105) [PDF 1.87 M] (273)
    摘要:
    为对半导体晶圆的表面缺陷进行快速检测, 提出一种基于深度可分离卷积和注意力机制的轻量级网络, 并在WM-811K数据集上进行了实验. 为解决该数据集中9种不同类别的缺陷比例相对不平衡问题, 采用了数据增强方法对较少数据的缺陷类别进行数据扩充. 本文模型中的深度可分离卷积可以降低模型的参数量, 提高模型的推理速度; 注意力机制可以使模型更加关注晶圆图像中有缺陷的区域, 使模型达到更好的分类效果. 实验表明, 所提方法在WM-811K数据集上的平均准确率高达96.5%, 相对于ANN、VGG16、MobileNetv2等方法均有不同程度的提高, 并且参数量和运算量只是经典轻量级网络MobileNetv2的73.5%和28.6%.
    2023,32(5):28-35, DOI: 10.15888/j.cnki.csa.009120
    [摘要] (103) [HTML] (111) [PDF 1.70 M] (189)
    摘要:
    近年来, 研究者们发现基于双分支结构的高光谱图像分类方法可以更有效地提取图像的光谱特征和空间特征用于分类. 但在双分支结构中, 各分支只侧重于细化、提取光谱特征或空间特征, 忽略了对光谱-空间跨维特征交互的研究, 且两分支各自提取的部分交互不明显, 因此影响了分类的性能. 针对这一问题, 本文提出了一种基于全局注意力信息交互的高光谱图像分类方法. 首先采用密集连接网络分两个分支分别细化图像的光谱特征和空间特征, 然后结合全局注意力机制(GAM)得到通道全局注意力特征和空间全局注意力特征, 最后通过一个信息交互的模块实现光谱和空间信息的交互, 更充分地利用光谱和空间信息实现分类. 本文提出的方法分别在 Pavia University (PU)和Salinas Valley (SV)两个数据集上进行了实验, 相较于其他的4种方法, 本文提出的方法在分类性能上取得了明显的提升.
    2023,32(5):36-44, DOI: 10.15888/j.cnki.csa.009055
    [摘要] (127) [HTML] (86) [PDF 1.96 M] (240)
    摘要:
    使用人工势场法进行无人机路径规划时, 往往存在目标不可达、运动轨迹迂回反复和路径长度过长等问题. 传统的人工势场法不能根据环境具体信息对斥力系数进行调整, 而现有的改进方法不能在自适应调整斥力系数的同时兼顾规划效果和规划时长. 针对以上问题, 提出了一种基于深度学习的无人机自适应斥力系数路径规划方法. 首先通过融合遗传算法与人工势场法找出在特定环境下最合适的斥力系数样本集, 其次利用该样本集训练残差神经网络, 最后通过残差神经网络计算适应环境的斥力系数, 进而使用人工势场法进行路径规划. 仿真实验表明, 该方法在一定程度上解决了人工势场法规划中目标不可达、运动轨迹迂回反复和路径长度过长等问题, 规划效果和规划时长方面均有优异表现, 能很好地满足无人机路径规划中对当前环境的自适应要求和快速规划的要求.
    2023,32(5):45-56, DOI: 10.15888/j.cnki.csa.009110
    [摘要] (106) [HTML] (78) [PDF 2.52 M] (243)
    摘要:
    在移动边缘计算(mobile edge computing, MEC)系统中, 用户的卸载策略会影响能耗和计算成本, 进而影响用户效益. 然而, 目前多数研究未考虑边缘服务器随机分布场景中用户的卸载策略和资源请求策略对效益的影响. 针对该问题, 提出了一种基于改进双重拍卖算法的计算卸载和资源分配策略. 首先, 该策略将用户与边缘服务器之间的交互过程建模为Stackelberg博弈, 并且证明了在该博弈内存在唯一纳什均衡点; 其次, 计算出用户对于不同服务器的卸载意愿以及计算资源请求量, 并将用户与最优服务器进行拍卖; 最后, 采用遍历法交换上一轮拍卖中部分交易中的用户与服务器, 以实现系统整体效益最优. 仿真实验结果表明, 与其他基准算法相比, 所提算法在服务器随机分布场景下提高了33.4%的系统用户总效益, 有效降低系统损失.
    快速检索
    过刊检索
    全选反选导出
    显示模式:
    优先出版日期:  2023-05-24 , DOI: 10.15888/j.cnki.csa.009159
    摘要:
    图神经网络因其强大的建模能力引起广泛关注, 常常被用来解决图上的节点分类任务. 现阶段常用的以图神经网络 (graph convolution network, GCN)为内核的模型解决此类问题, 但往往因为出现过拟合与过平滑而导致深层的节点嵌入表示效果并不好. 因此, 本文提出了一种基于GCN内核的结合残差连接与自注意力方法——GCNRN模型, 以提升GCN的泛化能力. 同时, 为了整合更深入的信息, 本文引入融合机制, 采用模糊积分融合多个分类器, 最终提高模型测试精度. 为了验证所提出方法的优越性, 本文采用Ogb-arxiv与常用的引文数据集进行了对比实验. GCNRN模型与多个以GCN为内核的现有模型相比, 节点分类准确率平均提高了2%, 且避免了传统的过拟合和过平滑现象. 此外, 实验结果表明, 增加了基于模糊积分的融合模块的多分类器模型比传统融合方法具有更好的分类效果.
    优先出版日期:  2023-05-24 , DOI: 10.15888/j.cnki.csa.009180
    摘要:
    随着云计算飞速发展, 以Docker为代表的容器技术逐渐被重视. 目前, 3种常见的容器编排工具有Kubernetes、Docker Swarm和Rancher. 然而, 现有的容器编排工具在所有工作节点的总容量超标时, 将会有响应时间长和资源占用较多等问题. 因此, 本文设计LSD (least space unused)算法以及LRU-SD (least recently used and space unused)算法, 并应用于3种编排工具中. 当总容量超出上限时, 则选择删除不工作的节点并且增加新的工作节点. 做法上, LSD算法是删除剩余空间最少的工作节点, LRU-SD算法先考虑删除最久未使用的节点, 当有多个符合要求的节点时, 则删除剩余空间最少的工作节点. 实验部分, 分析与比较使用不同算法对3种容器编排工具的影响, 包含响应时间、CPU和内存. 实验结果发现, LSD算法、LRU-SD算法和LRU算法不仅能够提高编排工具的响应时间, 还可以增加资源的使用率. 同时, 在提升CPU的使用率方面, LRU-SD算法的效果最好.
    优先出版日期:  2023-05-24 , DOI: 10.15888/j.cnki.csa.009186
    摘要:
    高光谱图像波段多、波段之间关联性强, 但其空间纹理和几何信息的表达较弱, 传统分类模型存在空间光谱特征提取不充分、计算量大的问题, 分类性能有待提高. 针对此问题, 提出一种基于小波变换的多尺度多分辨率注意力特征融合卷积网络 (wavelet transform convolutional attention network, WTCAN), 采用小波变换思想对光谱波段进行4次分解, 通过层次性提取光谱特征可减少计算量. 该网络设计了空间信息提取模块, 同时引入金字塔注意力机制, 通过设计逆向跳跃连接网络结构利用多尺度获取空间位置特征, 增强空间纹理表达能力, 可以有效改进传统2D-CNN特征提取尺度单一、忽略空间纹理细节等缺陷. 本文对所提出的WTCAN模型分别在不同空间分辨率高光谱数据集Indian Pines (IP)、WHU_Hi_HanChuan (HanChuan)、WHU_Hi_HongHu (HongHu)进行实验, 通过对比SVM、2D-CNN、DBMA、DBDA、HybridSN模型效果, WTCAN模型取得较好的分类效果, 3个数据集的分类总体精度分别达到了98.41%、99.64%、99.67%, 可为高光谱图像的分类研究提供参考依据.
    优先出版日期:  2023-05-24 , DOI: 10.15888/j.cnki.csa.009193
    摘要:
    目前恐高情绪分类中的生理信号主要涉及脑电、心电、皮电等, 考虑到脑电在采集和处理上的局限性以及多模态信号间的融合问题, 提出一种基于6种外周生理信号的动态加权决策融合算法. 首先, 通过虚拟现实技术诱发被试不同程度的恐高情绪, 同步记录心电、脉搏、肌电、皮电、皮温和呼吸这6种外周生理信号; 其次, 提取信号的统计特征和事件相关特征构建恐高情感数据集; 再次, 根据分类性能、模态和跨模态信息提出一种动态加权决策融合算法, 从而对多模态信号进行有效整合以提高识别精度. 最后, 将实验结果与先前相关研究进行对比, 同时在开源的WESAD情感数据集进行验证. 结论表明, 多模态外周生理信号有助于恐高情绪分类性能的提升, 提出的动态加权决策融合算法显著提升了分类性能和模型鲁棒性.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009199
    摘要:
    Dockerfile定义了一组构建容器镜像的指令, 这些指令指示了容器化的应用程序该如何构建. 最近的研究表明Dockerfile存在相当多的质量问题. 在本文中, 我们提出了一种新的工具DMiner (Dockerfile Miner)来提取高质量Dockerfile中的隐含规则, 这些规则将有助于提升Dockerfile的质量. DMiner主要分为3个模块, 分别负责Dockerfile的采集、过滤, Dockerfile的解析处理以及Dockerfile规则的挖掘提取, DMiner将Dockerfile解析成统一的序列表示并使用序列模式挖掘算法来提取规则. 本工具对现有的Dockerfile数据集进行了扩充, 同时新提取出了9条在其他工作未曾出现的规则, 在真实数据集上的大量实验证明了该工具的有效性和高效性.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009207
    摘要:
    开源数据集加速了深度学习的发展, 但存在许多不合理使用数据集的现象. 为保护数据集的知识产权, 近期工作提出数据集水印算法, 在数据集发布前预先植入水印, 当模型在此数据集上训练时该水印会被附着在模型中, 之后通过验证可疑模型是否存在水印来追溯数据集的非法使用. 但已有数据集水印算法无法在小扰动下提供有效并且隐蔽的黑盒水印验证. 为解决这一问题, 本文首次提出利用独立于图像内容与标签的风格属性来植入水印, 并限制对原数据集的扰动不涉及标签的修改. 通过不引入图像内容与标签的不一致性和额外的代理模型保证水印隐蔽性和有效性. 在水印验证阶段仅使用可疑模型的预测结果通过假设检验给出判断. 本文在CIFAR-10数据集上与现有5种方法相比较, 实验结果验证了本文提出的基于风格的数据集水印算法的有效性与功能不变性. 此外, 本文开展的消融实验验证了本文所提的风格优化模块的必要性, 算法在不同超参设定以及不同数据集下的有效性.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009209
    摘要:
    针对知识图谱推荐算法用户端和项目端建模程度不均且模型复杂度较高等问题, 提出融合知识图谱和轻量图卷积网络的推荐算法. 在用户端, 利用用户相似性生成邻居集合, 将用户及其相似用户的交互记录在知识图谱上多次迭代传播, 增强用户特征表示. 在项目端, 将知识图谱中实体嵌入传播, 挖掘与用户喜好相关的项目信息; 接着, 利用轻量图卷积网络聚合邻域特征获得用户和项目的特征表示, 同时采用注意力机制将邻域权重融入实体, 增强节点的嵌入表示; 最后, 预测用户和项目之间的评分. 实验表明, 在Book-Crossing数据集上, 相较于最优基线, AUCACC分别提高了1.8%和2.3%. 在Yelp2018数据集上, AUCACC分别提高了1.2%和1.4%. 结果证明, 该模型与其他基准模型相比有较好的推荐性能.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009212
    摘要:
    随着智慧工厂的逐渐发展, 移动机器人在工厂中的应用越来越广泛, 但是在工厂中障碍物较多, 使用传统人工势场法容易产生目标不可达以及局部最小值等问题. 本文针对传统人工势场法在路径规划中出现的目标不可达以及局部最优解进行改进. 首先针对目标不可达的情况, 采用新斥力势场函数, 通过对原人工势场法中的斥力势场函数增加影响函数, 从而解决目标不可达; 其次针对局部最优解, 采用人工势场法与模拟退火法相结合的方法, 利用模拟退火法中的增设子目标点, 打破平衡状态, 从而走出障碍物. 最后通过Matlab对比, 本文算法在10个障碍物中比其他文献中算法的行驶时间提升6.70%, 路径长度减少9.20%. 本文算法在20个障碍物中比其他文献中算法的行驶时间提升9.10%, 路径长度减少12.10%.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009182
    摘要:
    文中介绍了基于Kubernetes的AI调度引擎平台的设计与实现, 针对当前人工智能调度系统中存在的服务配置复杂, 集群中各节点计算资源利用率不均衡以及系统运维成本高等问题, 本文提出了基于Kubernetes实现容器调度和服务管理的解决方案. 结合AI调度引擎平台的需求, 从功能实现和平台架构等方面设计该平台的各个模块. 同时, 针对Kubernetes无法感知GPU资源的问题, 引入device plugin收集集群中每个节点上的GPU信息并上报给调度器. 此外, 针对Kubernetes调度策略中优选算法只考虑节点本身的资源使用率和均衡度, 未考虑不同类型的应用对节点资源的需求差异, 提出了基于皮尔逊相关系数 (Pearson correlation coefficient, PCC)的优选算法, 通过计算容器资源需求量与节点资源使用率的互补度来决定Pod的调度, 从而保证调度完成后各节点的资源均衡性.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009184
    摘要:
    现有的妆容迁移算法效果优越, 功能丰富, 但是较少考虑到输入图像为低分辨率的场景. 当高分辨率图像难以获得时, 现有的妆容迁移算法将难以适用, 妆容无法完全迁移. 为此本文提出了一种适用于低分辨率图像的妆容迁移算法, 将包含妆容信息的特征矩阵作为先验信息, 将超分辨率网络与妆容迁移网络结合在一起产生协同效应, 即使输入的图像为低分辨率图像, 也能输出高分辨率的妆容迁移结果, 并且充分保留妆容细节的同时提升姿势和表情的鲁棒性. 由于使用端到端的模型实现妆容迁移与超分辨率, 因此设计了一组联合损失函数, 包括生成对抗损失、感知损失、循环一致性损失、妆容损失和均方误差损失函数. 所提出的模型在妆容迁移与超分辨率的定性实验和定量实验中均达到了先进水平.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009181
    摘要:
    托盘的识别与定位是无人叉车中关键的问题之一. 当前托盘定位多采用目标检测的方法, 然而目标检测只能识别托盘在图像中的位置, 无法得到托盘的空间信息. 针对此问题, 本文提出了一种基于目标和关键点检测的单目托盘定位方法, 用于检测托盘并计算托盘当前的倾角和距离. 首先对托盘进行目标检测, 然后将检测的结果进行裁剪后输入到关键点检测网络中. 通过对托盘关键点的检测和托盘固有的几何外形特征, 设计边缘自适应调整, 得到高精度的托盘轮廓信息. 根据几何约束提出了基于轮廓点的托盘倾角与距离计算方法, 并采用RANSAC算法提升了计算结果的精度和稳定性, 解决了托盘的定位问题. 实验表明, 本文提出的算法在倾角计算上平均误差在5°以内, 水平距离计算上平均误差在110 mm以内, 能较好地定位托盘, 具有较高的实用价值.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009190
    摘要:
    由于对眼底视网膜图像进行人工诊断分类时存在效率低、漏诊、误诊等情况, 为辅助医师辨别多种疾病的眼底筛查结果, 降低漏检及误检率, 提出一种基于注意力机制SENet的卷积网络模型和GBDT梯度提升的分类方法来解决视网膜疾病分类问题. 该模型在深度学习模型的基础上, 利用采样卷积网络对提取的视网膜出血、视盘水肿、黄斑区病变这3种特征进行学习, 通过GBDT梯度提升的方法进行识别和分类, 并采用大连市第三人民医院提供的真实临床数据对所提方法的性能进行评价. 结果表明, 该模型在平均准确率, 精确率和召回率分别达到99.27%, 98.35%, 0.9810, 在视网膜疾病临床诊断中具有一定的实用价值.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009192
    摘要:
    引入结构化知识的对话系统因为能够生成流畅度更高、多样性更丰富的对话回复而受到广泛关注, 但是以往的研究只注重于结构化知识中的实体, 却忽略了实体之间的关系以及知识的完整性. 本文提出了一种基于图卷积网络的知识感知对话生成模型(KCG). 该模型通过知识编码器分别捕获实体与关系的语义信息并利用图卷积网络增强实体表征; 再利用知识选择模块获得与对话上下文相关的实体与关系的知识选择概率分布; 最后将知识选择概率分布与词表概率分布融合, 解码器以此选择知识或词表字词. 本文在中文公开数据集DuConv上进行实验, 结果表明, KCG在自动评估指标上优于目前的基线模型, 能生成更加流畅并且内容更加丰富的回复.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009197
    摘要:
    本文介绍了一种新的基于YOLOv5s的目标检测方法, 旨在弥补当前主流检测方法在小目标安全帽佩戴检测方面的不足, 提高检测精度和避免漏检. 首先增加了一个小目标检测层, 增加对小目标安全帽的检测精度; 其次引入ShuffleAttention注意力机制, 本文将ShuffleAttention的分组数由原来的64组减少为16组, 更加有利于模型对深浅、大小特征的全局提取; 最后增加SA-BiFPN网络结构, 进行双向的多尺度特征融合, 提取更加有效的特征信息. 实验表明, 和原YOLOv5s算法相比, 改善后的算法平均精确率提升了1.7%, 达到了92.5%, 其中佩戴安全帽和未佩戴安全帽的平均精度分别提升了1.9%和1.4%. 本文与其他目标检测算法进行对比测试, 实验结果表明SAB-YOLOv5s算法模型仅比原始YOLOv5s算法模型增大了1.5M, 小于其他算法模型, 提高了目标检测的平均精度, 减少了小目标检测中漏检、误检的情况, 实现了准确且轻量级的安全帽佩戴检测.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009187
    摘要:
    针对海上搜救资源调度决策困难、干扰多、实时性差、难以实现全局最优问题, 本文以黄渤海海域为例, 采用改进的非支配排序遗传 (NSGA-II)算法解决海上船舶搜救资源调度问题. 首先, 根据AIS以及北斗数据, 建立了海上搜救资源的多目标优化模型; 其次, 改进的NSGA-II算法采用基于正态分布交叉 (NDX)算子, 在扩大搜索范围的基础上, 避免陷入局部最优, 得到多目标问题完整的Pareto解集; 采用综合评价法 (TOPSIS)从Pareto解集中求得折衷解, 即最终设计的搜救调度方案; 最后, 在考虑船舶数量约束以及时间约束的条件下, 采用改进的NSGA-II算法分别与NSGA-II算法和贪婪算法进行对比, 并采用黄渤海海域船舶采集数据进行仿真. 结果表明该算法能够有效解决海上搜救资源调度优化问题.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009185
    摘要:
    现有瓷砖表面缺陷检测存在识别微小目标缺陷能力不足、检测速度有待提升的问题, 为此本文提出了基于改进YOLOv5的瓷砖表面缺陷检测方法. 首先, 由于瓷砖表面缺陷尺寸偏小的特性, 对比分析YOLOv5s的3个目标检测头分支的检测能力, 发现删除大目标检测头, 只保留中目标检测头和小目标检测头的模型检测效果最佳. 其次, 为了进一步实现模型轻量化, 使用ghost convolution和C3Ghost模块替换YOLOv5s在Backbone网络中的普通卷积和C3模块, 减少模型参数量和计算量. 最后, 在YOLOv5s的Backbone和Neck网络末端添加coordinate attention注意力机制模块, 解决原模型无注意力偏好的问题. 该方法在天池瓷砖瑕疵检测数据集上进行实验, 实验结果表明: 改进后的检测模型的平均精度均值达66%, 相比于原YOLOv5s模型提升了1.8%; 且模型大小只有10.14 MB, 参数量相比于原模型减少了48.7%, 计算量减少了38.7%.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009164
    摘要:
    作为斜拉桥的重要受力构件, 斜拉索的振动检测对桥梁健康监测具有关键作用. 在实验室理想条件下, 传统的空间相位振动检测算法能够实现结构振动的高精度测量, 然而在实际场景下, 环境因素如车辆、风激励以及拉索与地面的角度等会对测量结果造成较大的误差, 因此其不适用于实际场景下的拉索振动检测. 针对此问题, 本文提出了一种基于方向自适应复可控滤波器的拉索振动频率检测算法, 用于实现在真实场景下拉索振动的精确测量. 首先, 利用拉索的直线特性检测拉索位置, 并确定拉索主振方向; 其次根据拉索的振动方向特性, 设计方向自适应复可控滤波器组, 对视频的每一帧图像进行分解处理, 得到不同尺度同一方向的相位谱和幅度谱, 并对拉索边缘区域相位进行增强; 最后将每一帧图像处理得到的不同尺度的空间相位进行平均, 按时间顺序排列生成相位序列, 对提取到的相位序列进行傅里叶变换得到拉索振动主频频率. 通过与加速度传感器测量结果比较, 证明本文算法鲁棒性较高, 能够满足真实场景下桥梁拉索振动测量的应用需求.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009160
    摘要:
    基本Q学习算法应用于路径规划时, 动作选择的随机性导致算法前期搜索效率较低, 规划耗时长, 甚至不能找到完整的可行路径, 故提出一种改进蚁群与动态Q学习融合的机器人路径规划算法. 利用精英蚂蚁模型和排序蚂蚁模型的信息素增量机制, 设计了一种新的信息素增量更新方法, 以提高机器人的探索效率; 利用改进蚁群算法的信息素矩阵为Q表赋值, 以减少机器人初期的无效探索; 设计了一种动态选择策略, 同时提高收敛速度和算法稳定性. 在不同障碍物等级的二维静态栅格地图下进行的仿真结果表明, 所提方法能够有效减少寻优过程中的迭代次数与寻优耗时.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009167
    摘要:
    基于无人机平台获取的地面影像有着较高的空间分辨率, 但提供丰富的细节信息的同时, 也为农作物分类带来很多“干扰”, 尤其是在利用深度模型进行作物识别时, 存在边缘信息提取不充分及相似纹理作物误分, 导致分类效果欠佳等问题. 因此, 通过多尺度注意力特征提取的思路构建模型, 有效提取边缘信息, 提高作物分类精度. 所提出的多尺度注意力模型 (muiti-scale attention network, MSAT)通过多尺度块嵌入获取同一层级不同尺度的作物信息, 多尺度特征图被映射为多条序列独立地馈送到因子注意力模块中, 增强对农作物上下文信息的关注, 提高模型对地块边缘信息的提取, 因子注意力模块内置的卷积相对位置编码增强块内部局部信息的建模, 提高对相似纹理作物的区分能力, 最后通过融合局部特征与全局特征, 实现粗细双重信息的提取. 在水稻、甘蔗、玉米、香蕉和柑橘5种作物上的分类结果表明, MSAT模型的MIoU (mean intersection over union)和OA (overall accuracy)指标达0.816、98.10%, 验证了基于高分辨率图像的精细作物分类方法可行且设备成本低.
    优先出版日期:  2023-05-22 , DOI: 10.15888/j.cnki.csa.009168
    摘要:
    本文针对现有光学遥感图像超分辨率重建模型对感受野尺度关注不足和对特征通道信息提取不充分带来的问题, 提出了一种基于多尺度特征提取和坐标注意力的光学遥感图像超分辨率重建模型. 该重建模型基于深度残差网络结构, 在网络的高频分支中设计了多个级联的多尺度特征和坐标注意力模块 (multi-scale feature & coordinate attention block, MFCAB), 对输入的低分辨率光学遥感图像的高频特征进行充分发掘: 首先, 在MFCAB模块中引入Inception子模块, 使用不同尺度的卷积核捕捉不同感受野下的空间特征; 其次, 在Inception子模块后增加坐标注意力子模块, 同时关注通道与坐标两个维度, 以获得更好的通道注意力效果; 最后, 对各MFCAB模块提取的特征进行多路径融合, 实现多重多尺度空间信息与通道注意信息的有效融合. 本文模型在NWPU4500数据集上2倍、3倍放大中PSNR值达到34.73 dB和30.12 dB, 较EDSR分别提升0.66 dB和0.01 dB, 在AID1600数据集上2倍、3倍、4倍放大中PSNR值达到34.71 dB、30.58 dB、28.44 dB, 较EDSR分别提升0.09 dB、0.03 dB、0.04 dB. 实验结果表明, 该模型在光学遥感图像数据集上的重建效果优于主流的图像超分辨率重建模型.
    优先出版日期:  2023-05-19 , DOI: 10.15888/j.cnki.csa.009175
    摘要:
    针对多种农作物病虫害图像, 在自然环境下因虫害种类繁多, 小目标特征相似的技术问题, 导致检测困难难以达到令人满意的精度. 本文提出了一种自然背景下加强局部特征和全局特征信息融合的害虫检测识别模型YOLOv5-EB, 在公开的大规模害虫数据集IP102上进行实验, 结果表明该研究比YOLOv5模型精确度提高了5个百分点. 引入一维卷积替换CBAM中通道注意力的MLP操作, 优化了通道注意力经过全局处理后容易忽略通道内信息交互的问题; 其次使用6×6卷积替换Focus操作, 来增强提取害虫特征的能力. 实验结果表明, 对害虫进行检测时, YOLOv5-EB的平均精度值达到了87%, 与Faster R-CNN、EfficientDet、YOLOv3、YOLOv4、YOLOv5模型相比, 不仅有效提高了作物害虫图像的识别性能, 而且有效提高了检测速度. 研究表明, YOLOv5-EB算法满足对多种农作物病虫害目标检测的准确性和实时性要求.
    优先出版日期:  2023-05-19 , DOI: 10.15888/j.cnki.csa.009089
    摘要:
    轨道车智能防护会涉及轨道车侵入物检测与行驶区域分割任务, 在深度学习领域已有针对各任务的算法, 却无法很好满足多任务情形时的需求. 该算法使用轻量级卷积神经网络(CNN)作为编码器提取特征图, 随之将特征图送到两个基于one-stage检测网络的解码器中, 进而完成各自的任务. 不同级别和尺度的语义特征在编码器输出的特征图中被融合, 良好地完成像素级语义预测, 在检测和分割效果上有明显提升. 采用本算法的设备将掌握对新目标的识别检测判断与追踪, 为提升轨道车行驶安全做出保障.
    优先出版日期:  2023-05-19 , DOI: 10.15888/j.cnki.csa.009123
    摘要:
    为了降低NFV (network function virtualization)架构下共用基础设施给网络切片带来的安全风险, 同时兼顾部署网络切片时的可用性, 本文提出了一种基于BN (Brewer-Nash)模型的网络切片安全部署方法. 该部署方法首先提出了基于BN模型的5G切片部署架构, 基于BN模型设计了网络切片中虚拟网元(virtual network function, VNF)的安全部署规则, 使不同利益冲突类垂直用户网络切片的VNF形成主机隔离, 提升了VNF运行时的安全性; 然后利用整数线性规划对该部署问题建模, 把部署成本最小化作为目标函数; 最后使用遗传算法求出部署结果. 仿真结果表明, 该方法在满足网络切片VNF安全部署规则的前提下降低了部署成本.
    优先出版日期:  2023-05-19 , DOI: 10.15888/j.cnki.csa.009130
    摘要:
    为有效解决目标跟踪在面对大尺度形变、完全遮挡、背景干扰等复杂场景时出现漂移或者跟踪丢失的问题, 本文提出了一种基于多支路的孪生网络目标跟踪算法(SiamMB). 首先, 通过增加邻近帧支路的网络鲁棒性增强方法以提高对搜索帧中目标特征的判别能力, 增强模型的鲁棒性. 其次, 融合空间注意力网络, 对不同空间位置的特征施加不同的权重, 并着重关注空间位置上对目标跟踪有利的特征, 提升模型的辨别力. 最后, 在OTB2015和VOT2018数据集上的进行评估, SiamMB跟踪精度和成功率分别达到了91.8%和71.8%, 相比当前主流的跟踪算法取得了良好的竞争力.
    优先出版日期:  2023-05-19 , DOI: 10.15888/j.cnki.csa.009097
    摘要:
    事件抽取是信息抽取领域的重点研究方向. 为了提升事件抽取效果, 解决通用事件抽取方法无法充分利用文本特征信息的问题, 提出了融合触发词特征的事件抽取方法. 通过构建远程触发词库, 为事件类型分类模型提供额外特征信息, 增强事件触发词的发掘能力, 再融合事件类型与触发词距离特征, 提升事件要素抽取模型的表示学习能力, 最后, 将事件类型分类模型与事件要素抽取模型串联, 提升事件抽取效果. 在DuEE数据集上进行实验, 与其他模型相比, 本模型提升了准确率、召回率、F1值, 证明了本模型的有效性.
    优先出版日期:  2023-05-19 , DOI: 10.15888/j.cnki.csa.009057
    摘要:
    近年来, 由于人工智能在医疗领域的高速发展, 科研人员对医学图像的需求量与日俱增. 这些医学图像往往需要经过精细地标注之后才能够被投入使用. 与自然图像相比, 医学图像的数据标注工作更具专业性、复杂性. 因此, 医学图像面临着标注速率低、标注成本高等问题, 从而导致带标签样本稀缺的困境. 眼底图像作为一种重要的医学图像, 能够实现绝大多数的眼科疾病筛查与初诊工作, 如糖尿病视网膜病变、青光眼等, 但也同样面临着标注困难的问题. 针对这样的现状, 本文设计并开发了一种高效的眼底图像半自动标注系统, 该系统的创新点是能够对多种眼病进行半自动标注. 针对眼底图像进行多种疾病的预测, 预测结果的类型包括疾病分级和病灶分割, 标注人员只需对生成的预测结果进行审核并修改, 这一过程可以大大降低标注人员的工作量. 此外, 该系统包括用户管理、项目管理、图像管理、算法模型管理4个模块. 通过这4个模块可以实现团队标注中的任务分配, 标注进度数据可视化, 标注结果快速导出等人性化功能. 该系统极大提升了标注人员的标注效率和标注体验.
    优先出版日期:  2023-05-19 , DOI: 10.15888/j.cnki.csa.009176
    摘要:
    综合化航空电子系统是新一代飞机的一个重要特征, 其可靠性和稳定性对整个飞机的飞行和安全起着决定性作用. 针对航电系统应当具有高可靠性的特点, 提出一种分布式集群余度架构, 并设计相应的余度管理方法, 以容忍航电系统故障后可能出现的拜占庭错误, 有效提高容错计算机的可靠性和容错能力. 采用门限签名和集群选主两种方案优化提出的余度管理方法, 降低集群中余度计算机之间的通信开销, 避免影响航电系统的实时性, 提高余度管理效率. 通过模拟实验进行测试, 结果验证了分布式集群余度管理方法可以有效提升航电系统的可靠性, 增强拜占庭弹性, 实现在n余度的航电系统中只要拜占庭节点数小于n/3, 系统仍然能够正确运行, 并且优化方案具有更低的通信开销和计算开销.
    优先出版日期:  2023-05-19 , DOI: 10.15888/j.cnki.csa.009169
    摘要:
    工业互联网中设备任务的处理需要大量计算资源, 有低时延需求的任务显著增多. 边缘计算将算力等资源放置到靠近需求一侧, 为任务处理提供有效支撑. 但由于边缘计算资源有限, 无法同时满足设备任务的低时延和高完成率需求. 如何确定合理的卸载决策与任务调度, 仍然存在巨大挑战. 针对以上问题, 本文提出了一种基于深度学习的动态优先级任务调度算法DPTSA, 首先根据动态优先级选择待处理任务, 通过神经网络产生任务调度决策, 然后通过交叉变异等操作产生一组可行解, 再筛选最优解存储到经验缓冲区, 最后通过经验缓冲区样本优化神经网络参数. 基于Google的Brog任务调度数据集的实验结果表明, 相比于4种基准算法, DPTSA在任务等待时间和任务完成率方面都有出色表现.
    优先出版日期:  2023-05-19 , DOI: 10.15888/j.cnki.csa.009163
    摘要:
    针对普通神经卷积网络对番茄叶病的识别精准度, 先提出一种新型的多尺度融合注意力机制的网络(MIPSANet), 在该网络中采用轻量级网络作为主要框架, 减少了网络的参数, 为了增加网络的深度和宽度, 加入了Inception结构, 用于提取数据的多尺度特征信息, 同时, 在这个过程中使用更加精细的双重注意力机制, 极化自注意力(polarized self-attention, PSA), 作为一个即插即用的模块, 将其嵌入整个模型中, 提高了重要特征点的表达能力, 同时PSA模块的轻量化也符合本模型的使用. 在卷积后加入全连接层, 进行分类. 使用提出的网络在Kaggle公开数据集tomato leaves dataset 上进行进行实验, 对其进行30批次的训练, 取得了91.05%的准确率, 与其他方法进行对照, 取得良好的效果. 试验结果表明该网络对番茄叶病的分类有很好的效果, 为分类网络的网络结构和参数配置方面提供一些参考价值.
    优先出版日期:  2023-05-19 , DOI: 10.15888/j.cnki.csa.009196
    摘要:
    危险天气下的改航与受限区划设和路径规划算法密切相关, 本文针对改航环境构建中Graham扫描结果存在较大无效区域, 提出分块后并行扫描. 针对危险天气的突发性, 为了适用于复杂环境, 提出在增量式的D*Lite全局规划路径基础上智能分割、蚁群算法局部搜索的复合结构动态规划方法. 通过改进信息素更新策略解决收敛速度慢、耗时长且易陷入局部最优的缺点. 实验结果表明, 分块并行Graham扫描划设的飞行受限区形状更接近实际, 面积缩至原先的48.1%. 改进蚁群融合D*Lite的复合结构动态路径规划算法D*Lite-ACO兼顾全局与局部, 将重规划范围控制到当前位置与目标点间, 在路径长度、规划时间和迭代范围上的评价指标分别提升1.2%、40.7%、66.7%.
    优先出版日期:  2023-05-19 , DOI: 10.15888/j.cnki.csa.009202
    摘要:
    非侵入式负荷分解是智能用电系统的一个重要环节, 可深入分析用户的用电信息, 对负荷预测、需求侧管理及电网安全有重要意义. 本文提出了一种基于改进粒子群优化因子隐马尔可夫模型(IPSO-FHMM)的非侵入式负荷分解方法. 利用高斯混合模型 (GMM) 对单负荷进行状态聚类, 总负载模型由因子隐马尔可夫模型表示. 针对 Baum-Welch算法容易收敛于局部极值的问题, 将线性递减权重的粒子群优化算法引入到 FHMM 的参数训练中. 使用AMPds2数据集进行仿真实验, 结果表明, 该模型可以有效地提高分解精度.
    优先出版日期:  2023-05-19 , DOI: 10.15888/j.cnki.csa.009203
    摘要:
    目前, 大多数的增强现实和自动驾驶应用不仅会使用到深度网络估计的深度信息, 还会使用到位姿网络估计的位姿信息. 将位姿网络和深度网络同时集成到嵌入式设备上, 会极大地消耗内存. 为解决这一问题, 提出一种深度网络和位姿网络共用特征提取器的方法, 使模型保持在一个轻量级的尺寸. 此外, 通过带有线性结构的深度可分离卷积轻量化深度网络, 使网络在不丢失过多细节信息前提下还可获得更少的参数量. 最后, 通过在KITTI数据集上的实验表明, 与同类算法相比, 该位姿网络和深度网络参数量只有的 35.33 MB. 同时, 恢复深度图的平均绝对误差也保持在0.129.
    优先出版日期:  2023-05-12 , DOI: 10.15888/j.cnki.csa.009177
    摘要:
    给图片添加特定扰动可以生成对抗样本, 误导深度神经网络输出错误结果, 更加强力的攻击方法可以促进网络模型安全性和鲁棒性的研究. 攻击方法分为白盒攻击和黑盒攻击, 对抗样本的迁移性可以借已知模型生成结果来攻击其他黑盒模型. 基于直线积分梯度的攻击TAIG-S可以生成具有较强迁移性的样本, 但是在直线路径中会受噪声影响, 叠加与预测结果无关的像素梯度, 影响了攻击成功率. 所提出的Guided-TAIG方法引入引导积分梯度, 在每一段积分路径计算上采用自适应调整的方式, 纠正绝对值较低的部分像素值, 并且在一定区间内寻找下一步的起点, 规避了无意义的梯度噪声累积. 基于ImageNet数据集上的实验表明, Guided-TAIG在CNN和Transformer架构模型上的白盒攻击性能均优于FGSM、C&W、TAIG-S等方法, 并且制作的扰动更小, 黑盒模式下迁移攻击性能更强, 表明了所提方法的有效性.
    优先出版日期:  2023-05-12 , DOI: 10.15888/j.cnki.csa.009172
    摘要:
    基于语义分割的图像掩膜方法常用来解决静态场景三维重建任务中运动物体的干扰问题, 然而利用掩膜成功剔除运动物体的同时会产生少量无效特征点. 针对此问题, 提出一种在特征点维度的运动目标剔除方法, 利用卷积神经网络获取运动目标信息, 并构建特征点过滤模块, 使用运动目标信息过滤更新特征点列表, 实现运动目标的完全剔除. 通过采用地面图像和航拍图像两种数据集以及DeepLabV3、YOLOv4两种图像处理算法对所提方法进行验证, 结果表明特征点维度的三维重建运动目标剔除方法可以完全剔除运动目标, 不产生额外的无效特征点, 且相较于图像掩膜方法平均缩短13.36%的点云生成时间, 减小9.93%的重投影误差.
    优先出版日期:  2023-05-12 , DOI: 10.15888/j.cnki.csa.009173
    摘要:
    在室内环境下的机器人视觉导航任务中, 可行驶区域检测是不可或缺的一部分, 这是保证自动驾驶任务实现的基础. 目前较多的解决方法是对数据集中出现过的障碍物进行识别来检测可行驶区域, 缺乏灵活性, 因此本文提出了一种针对地铁站等室内平坦地面的可行驶区域检测方法, 提高实用性. 本文采用经典的MobileNetV3网络对采集到的前方图像进行分类, 判断是否为地面区域. 由于室内地面的地标、箭头等贴纸的影响, 因此需要对非地面区域进一步判断, 与常规的立体障碍物进行区分. 本文利用连续帧之间的特征点匹配获得相机移动距离, 并利用直线拟合计算斜率的方法达到区分立体障碍物与平面地标的目的. 实验表明, 本文提出的方法能较好地检测机器人前方可行驶区域, 具有较高的实用价值.
    优先出版日期:  2023-05-12 , DOI: 10.15888/j.cnki.csa.009132
    摘要:
    针对信息化系统安全风险评估过程中安全风险因素指标的重要性难以赋权的问题, 本文以建筑工地施工现场为应用场景, 提出一种基于改进的D-S证据理论与融合权集结合的安全风险评估模型. 首先, 在充分研究建筑工地安全风险评估流程和要素的基础上, 建立建筑工地安全评价体系; 其次, 采用基于权值分配和矩阵分析的D-S合成算法改进AHP法和基于数据的熵权法计算评价体系中指标层中各指标的主、客观权重; 然后, 运用改进的D-S证据融合算法进行多源证据的合成, 获取指标权重, 避免单一赋权的片面性, 得到最优综合权重; 最后, 根据TOPSIS评价算法计算建筑工地综合评价指数. 分析表明, 基于改进D-S证据理论-融合权集的安全风险评估模型, 能有效评估建筑工地施工现场的安全性, 降低评估结果的不确定性, 提高风险评估结果可信度.
    优先出版日期:  2023-05-12 , DOI: 10.15888/j.cnki.csa.009119
    摘要:
    源代码注释生成旨在为源代码生成精确的自然语言注释, 帮助开发者更好地理解和维护源代码. 传统的研究方法利用信息检索技术来生成源代码摘要, 从初始源代码选择相应的词或者改写相似代码段的摘要; 最近的研究采用机器翻译的方法, 选择编码器-解码器的神经网络模型生成代码段的摘要. 现有的注释生成方法主要存在两个问题: 一方面, 基于神经网络的方法对于代码段中出现的高频词更加友好, 但是往往会弱化低频词的处理; 另一方面, 编程语言是高度结构化的, 所以不能简单地将源代码作为序列化文本处理, 容易造成上下文结构信息丢失. 因此, 本文为了解决低频词问题提出了基于检索的神经机器翻译方法, 使用训练集中检索到的相似代码段来增强神经网络模型; 为了学习代码段的结构化语义信息, 本文提出结构化引导的Transformer, 该模型通过注意力机制将代码结构信息进行编码. 经过实验, 结果证明该模型在低频词和结构化语义的处理上对比当下前沿的代码注释生成的深度学习模型具有显著的优势.
    优先出版日期:  2023-04-28 , DOI: 10.15888/j.cnki.csa.009178
    摘要:
    在斯隆数字巡天任务中, 受体积较大亮度较高的天体干扰, 现阶段的目标检测算法对小尺度天体的检测效果并不理想. 针对上述问题, 提出一种基于Mask-GAN和YOLOv3的小尺度天体检测方法. 方法分为两大步骤: 第1步干扰天体屏蔽. 首先设计了一个干扰天体Mask构建算法, 通过自适应阈值分割和连通域分析提取干扰目标, 并提出融合各波段区域特征和排除邻近目标方式构建Mask, 避免以往分割方法存在的光晕残留和邻近目标错误分割现象; 其次构建GAN模型, 结合干扰天体Mask完成屏蔽干扰任务. 第2步将处理过的数据输入改进的YOLOv3模型进行小尺度天体检测. 引入注意力机制, 构建C-EfficientNet作为主干特征提取网络, 加强网络的特征提取能力和对目标关注程度; 同时扩展4个有效特征层并提出一种提升浅层特征图权重的方式SAt, 让网络更好地利用分辨率高细节丰富的浅层特征来检测小尺度天体. 实验与分析表明, 在SDSS (Sloan digital sky survey)天文数据集上对小尺度恒星和星系的检测平均精度达到了81.16%和77.89%, 相比于当前经典算法检测效果更好, 有一定的实际应用意义.
    优先出版日期:  2023-04-28 , DOI: 10.15888/j.cnki.csa.009179
    摘要:
    针对目前在遥感目标检测领域广泛使用的YOLOv3算法存在对小目标物体的特征表达能力不足, 检测效果不好的问题, 本文提出一种改进的YOLOv3小目标检测算法. 首先, 引入全局信息注意力机制并改进特征提取网络和特征金字塔结构, 提高模型小目标特征提取能力和检测能力; 其次, 对数据集进行单尺度Retinex融合特征增强, 提高模型对小目标特征的学习效果; 最后, 使用自适应锚框优化算法对anchors进行优化, 提高anchors和目标的匹配程度. 选用遥感数据集RSOD进行实验, 本文算法的全类平均精度为92.5%, 相比经典YOLOv3算法, 提高10.1%, 对遥感小目标的检测效果得到明显提升.
    优先出版日期:  2023-04-28 , DOI: 10.15888/j.cnki.csa.009170
    摘要:
    由于研发项目的复杂性、不确定性、动态性、参研团队差异等因素的影响, 难以合理分配研发任务. 本文综合考虑参研团队能力的不确定性、研发项目运行过程的不确定性等因素, 通过仿真估计研发项目的工期、成本等指标; 考虑决策者的心理因素, 基于前景理论计算研发工期、研发成本的前景价值; 以前景价值作为适应度评价指标, 基于NSGA-III构建研发任务分配优化算法. 算例研究表明, 基于NSGA-III、NSGA-II和MOEA-D构建的优化算法均可有效改进研发任务分配方案, 而基于NSGA-III构建的算法的优化效果最好.
    优先出版日期:  2023-04-28 , DOI: 10.15888/j.cnki.csa.009171
    摘要:
    针对传统示教再现机器人仅能进行位置确定、轨迹固定的拆垛任务, 局限于固定场景的问题, 设计了一个基于视觉定位的机器人智能拆垛系统. 该系统利用目标像素中心坐标转换求得对应世界坐标. 针对眼在手外的安装相机方式, 导致目标经图像处理算法求得的旋转角度可能由于相机自身的偏转而产生误差的问题, 提出利用相机外参系数补偿目标旋转角度. 最后设计拆垛策略, 通信引导机器人以由近及远的抓取顺序执行拆垛任务, 并无需人工干预自动完成整垛拆卸. 经过实验数据表明, 该系统可在未知工作场景中对未知位置目标进行抓取, 位置误差可达1.1 mm, 角度误差可达1.2°, 堆垛一层定位时间为1.2 s左右, 满足工业场景中对拆垛机器人的精度与效率需求.
    优先出版日期:  2023-04-28 , DOI: 10.15888/j.cnki.csa.009112
    摘要:
    基于深度学习的人体姿态估计广泛应用于姿态识别、人机交互等领域. 为了提升人体关键点的检测精度, 很多网络采用运算量、参数量和复杂度不断增加的模型架构, 导致无法直接部署到低算力设备. 为了解决上述问题, 本文提出了一种多路特征注意力融合的轻量型方法. 模型基于HigherHRNet网络进行轻量化设计和训练, 包括: 采用通道拆分和通道混洗, 解决分组卷积后特征层之间存在的信息隔离; 采用线性运算的特征生成方法, 解决不同特征层之间存在的冗余性; 采用融合注意力信息的方法, 缓解因轻量化导致的准确率下降. 在MS COCO数据集上完成了模型的训练、测试、可视化以及消融实验. 实验结果表明本文的轻量化方法在保证直观的检测精度前提下, 能够显著降低人体姿态估计的计算量.
    优先出版日期:  2023-04-25 , DOI: 10.15888/j.cnki.csa.008950
    摘要:
    针对手工测试成本高、时效性弱和传统的接口自动化测试工具扩展能力不足问题, 提出了一个支持用例集并行测试的接口测试平台(OLa). OLa采用分层架构模式将系统分为用户展示层、应用逻辑层、数据服务层和用例执行层. 其中, 用户展示层基于Vue框架开发, 结合Vue Router、Vuex等工具实现单页应用; 应用逻辑层基于Spring Boot框架开发; 数据服务层基于MyBatis-Plus框架和Spring Data框架开发; 用例执行层使用okhttp3、fastjson、jackson等工具实现接口测试. 此外, 基于系统技术架构、Java网络编程和面向抽象编程的思想, 创新性地提出了基于C/S模式的用例执行流程和基于参数识别的自动匹配校验方法, 解决了传统的自动化测试工具无法支持并行测试的问题. 实验结果表明本文设计与实现的OLa接口测试平台支持单用例测试、用例集的串行测试和并行测试, 能够自动识别用例参数并对接口响应内容进行校验, 提高了接口测试的灵活性和有效性, 降低了测试难度, 并能够在用例之间无相互依赖的情况下提高接口测试的效率.
    优先出版日期:  2023-04-25 , DOI: 10.15888/j.cnki.csa.009080
    摘要:
    在阿尔兹海默症分类问题中, 超图神经网络可以从被试间的超图关系中提取特征, 在表示学习复杂图结构方面具有很好的优势, 但大多数模型都直接或间接地将超图所表示的被试间的高阶复杂关系分解, 转化为简单的二元关系进行特征学习, 没有有效利用超边的高阶信息, 因此提出了基于线-超图神经网络(line-hypergraph neural network, L-HGNN)的阿尔兹海默症分类模型, 该模型利用稀疏线性回归表征被试间多元相关性, 借助超图和线图的转换在神经网络模型中实现节点的高阶邻域信息传递和超边整体结构特征学习, 同时, 结合注意力机制生成更具区分性的节点嵌入, 进而用于阿尔兹海默症的辅助诊断. 在ADNI数据上与常用的两种方法比较, 实验结果表明, 该方法能有效提高分类准确率, 在阿尔兹海默症早期诊断上具有重要的应用价值.
    优先出版日期:  2023-04-25 , DOI: 10.15888/j.cnki.csa.009121
    摘要:
    当前, 路由选择算法、计算机视觉图像切割以及机器学习领域的许多问题都可以归结为求解网络最大流. 为了提高基于分层网络最大流算法的效率, 提出了一种基于记忆化搜索策略的最大流算法, 针对传统Edmonds-Karp算法和Dinic算法重复搜索无效路径所导致的额外开销问题, 设计了一种能够记录搜索状态的记忆化搜索策略, 来避免重复搜索流网络中的无效部分. 实例分析表明了记忆化搜索策略的高效性与可行性. 最终实验结果表明, 基于记忆化搜索的最大流算法执行效率优于传统的Dinic算法.
    优先出版日期:  2023-04-25 , DOI: 10.15888/j.cnki.csa.009069
    摘要:
    经济全球化赋予了logo巨大的商业价值, 随着计算机视觉领域的发展, 为logo分类与识别提供了更广阔的应用领域. 本文针对logo图像的分类识别, 为了提高模型对logo图像分类的能力, 基于logo图像整体特征不显著且数量众多的特点, 提出了用细粒度图像分类的方法渐进式多粒度拼图训练(progressive multi-granularity training of jigsaw patches, PMG-Net)对logo图像数据集进行分类. 通过拼图生成器生成包含不同粒度信息的输入图像, 再引入渐进式多粒度训练模块融合不同粒度的特征, 融合后的特征更注重图像之间的细微差别, 使logo图像分类的效果有显著提高. 在提取输入图像特征时采用LeakyReLU (leaky rectified linear unit)激活函数保留图像中的负值特征信息, 并引入通道注意力机制, 调整特征通道的权重, 增强特征信息指导能力以改进模型的分类效果. 实验结果表明, 本文在logo图像数据集上的分类精确率优于传统的分类方法. 本文通过融合多粒度特征的渐进训练策略以及随机拼图生成器的方法实现了对logo图像的高效分类, 为解决logo图像分类中存在的问题提供了一种新的思路.
    优先出版日期:  2023-04-25 , DOI: 10.15888/j.cnki.csa.009150
    摘要:
    高质量的问答对有助于从文章中获取知识, 提高问答系统性能, 促进机器阅读理解, 在人类活动和人工智能领域中都起着较为重要的作用. 当前主要问答对生成方法依靠提供文章中的候选答案, 根据答案生成特定的问题. 然而一些候选答案可能会生成无法从文章中回答的问题, 或是生成问题的答案不再是候选答案, 造成问答对相关性差, 影响问答对的质量. 针对此问题, 本文提出了一个基于关键短语抽取与过滤生成问答对的方法. 该方法能够在输入文本中自动抽取适合生成问题的关键短语作为候选答案, 再根据候选答案在问题生成器和答案生成器中生成问答对, 并通过对比候选答案与生成答案的相似度过滤相关性低的问答对, 最终输出保证质量的问答对. 本方法在SQUAD1.1和NewsQA数据集上进行了实验验证, 并人工检验了生成的问答对的质量, 结果表明该方法可以有效提高生成的问答对的质量.
    优先出版日期:  2023-04-25 , DOI: 10.15888/j.cnki.csa.009151
    摘要:
    目前猴痘病毒在全球范围内传播, 这种病毒在临床上与其他皮肤疾病难以区分, 特别是天花病毒和水痘病毒. 在确定性聚合酶链式反应技术和其他生物检测技术还没有完全成熟的情况下, 通过计算机辅助诊断技术检测猴痘病毒皮肤病变是一种可行的方法, 因此提出了一种基于残差网络的猴痘病毒皮肤病变分类算法. 该算法以残差网络为基本框架, 结合深度可分离卷积和轻量化注意力, 在降低模型计算量与复杂度的同时, 也提高了模型的分类性能. 实验结果表明, 该算法对猴痘病毒皮肤病变表现出较好的分类性能, 对猴痘皮肤病变的分类准确率、召回率和精度分别为97.3%, 96.8%和97.2%, 且均优于实验中所对比的常见分类模型和其他研究方法.
    优先出版日期:  2023-04-25 , DOI: 10.15888/j.cnki.csa.009145
    摘要:
    物联网服务作为信息世界软件服务通过物联网向现实世界的延伸, 其在物联网系统具有重要的作用. 然而, 不同于传统Web服务, 物联网服务具有现实感知、数据驱动、异构分布、时空相关等新特点, 使得现有的服务模型不足以对物联网服务有效刻画, 进而也不能满足物联网应用中的后续服务发现、服务卸载、服务组合等需求. 在凝练分析物联网服务建模需求和已有物联网服务模型的基础上, 提出了一种基于实体-数据的物联网服务建模框架, 该框架提出了服务、实体、数据三元信息融合的物联网服务模型概念及概念关系, 重点定义了服务、实体、数据的时空属性及时空依赖关系, 以支持基于时空相关性的物联网服务关联表示与分析, 并通过扩展OWL-S (ontology Web language for services)给出了基于实体-数据的物联网服务描述方式. 最后, 结合一个高速公路物联网应用案例对模型的使用方式和效果进行了讨论.
    优先出版日期:  2023-04-25 , DOI: 10.15888/j.cnki.csa.009148
    摘要:
    多标签图像分类是多标签数据分类问题中的研究热点. 针对目前多标签图像分类方法只学习图像的视觉表示特征, 忽略了图像标签之间的相关信息以及标签语义与图像特征的对应关系等问题, 提出了一种基于多头图注意力网络与图模型的多标签图像分类模型(ML-M-GAT). 该模型利用标签共现关系与标签属性信息构建图模型, 使用多头注意力机制学习标签的注意力权重, 并利用标签权重将标签语义特征与图像特征进行融合, 从而将标签相关性与标签语义信息融入到多标签图像分类模型中. 为验证本文所提模型的有效性, 在公开数据集VOC-2007和COCO-2014上进行实验, 实验结果表明, ML-M-GAT模型在两个数据集上的平均均值精度(mAP)分别为94%和82.2%, 均优于 CNN-RNN、ResNet101、MLIR、MIC-FLC 模型, 比ResNet101模型分别提高了4.2%和3.9%. 因此, 本文所提的ML-M-GAT模型能够利用图像标签信息提高多标签图像分类性能.
    优先出版日期:  2023-04-23 , DOI: 10.15888/j.cnki.csa.009149
    摘要:
    针对水下图像模糊、颜色失真, 水下场景环境复杂、目标特征提取能力有限等导致的水下鱼类目标检测精确度低的问题, 提出一种基于YOLOv5的改进水下鱼类目标检测算法. 首先, 针对水下图像模糊、颜色失真的问题, 引入水下暗通道优先 (underwater dark channel prior, UDCP)算法对图像进行预处理, 有助于在不同环境下正确识别目标; 然后, 针对水下场景复杂、目标特征提取能力有限问题, 在YOLOv5网络中引入高效的相关性通道 (efficient channel attention, ECA), 增强对目标的特征提取能力; 最后, 对损失函数进行改进, 提高目标检测框的准确度. 通过实验证明改进后的YOLOv5在水下鱼类目标检测中精确度比原始的YOLOv5提高了2.95%, 平均检测精度(mAP@0.5:0.95)提高了5.52%.
    优先出版日期:  2023-04-23 , DOI: 10.15888/j.cnki.csa.009144
    摘要:
    由于社交媒体网络的复杂性, 单一性质的同质信息网络对社交媒体账号分类会造成信息丢失, 对分类结果产生不利影响. 针对这种问题, 本文提出基于异质图卷积注意网络的社交媒体账号分类方法(HGCANA). 首先构建社交媒体的异质信息网络, 然后提取异质信息网络的社交媒体特征, 引入注意力机制, 对社交媒体账号进行分类识别. 通过实验比较HGCANA方法与现有方法, 证明了本文提出的HGCANA方法能够更好地对社交网络媒体账号进行有效分类.
    优先出版日期:  2023-04-23 , DOI: 10.15888/j.cnki.csa.009158
    摘要:
    加密和动态端口技术使传统的流量分类技术不能满足网络游戏识别的性能需求, 本文提出了一种基于自编码器降维的端到端流量分类模型, 实现网络游戏流量的准确识别. 首先将原始流量预处理成784 B的一维会话流向量, 利用编码器进行无监督降维, 去除无效特征; 接着探索构建卷积神经网络与LSTM网络并联算法, 对降维后的样本进行空间和时序特征的提取和融合, 最后利用融合特征进行分类. 在自建的游戏流量数据集和公开数据集上测试, 本文模型在网络游戏流量识别方面达到了97.68%的准确率; 与传统端到端的网络流量分类模型相比, 本文所设计的模型更加轻量化, 具有实用性, 并且能够在资源有限的设备中方便部署.
    优先出版日期:  2023-04-23 , DOI: 10.15888/j.cnki.csa.009161
    摘要:
    针对常一线航空煤油闪点值预测提出基于灰色关联分析法 (grey correlative analysis, GRA)与改进的鲸鱼优化算法(improved whale algorithm, IWOA)优化极限学习机 (extreme learning machine, ELM)的软测量方法. 利用GRA计算出各个辅助变量与待测变量的信息关联度, 通过实验法选取辅助变量作为输入, 然后利用IWOA为ELM寻找最优权阈值. 在算法迭代前期, 利用改进的Tent混沌映射进行种群初始化使种群分布更加均匀, 利用自适应权重结合随机差分变异策略来提升算法的寻优能力, 通过8个基准测试函数对改进算法的有效性进行验证. 通过某炼油厂常压塔常一线航空煤油闪点实际数据, 验证了改进模型对闪点值预测的有效性.
    优先出版日期:  2023-04-23 , DOI: 10.15888/j.cnki.csa.009165
    摘要:
    针对当前传统农作物病害语义分割方法精度不高、鲁棒性差等问题, 本文提出了基于注意力机制的改进UNet草莓病害语义分割模型. 首先, 在编码器中加入CNN-Transformer混合结构, 增强全局信息与局部细节信息的特征提取能力. 其次, 在解码器中将dual up-sample模块替换传统上采样, 提高特征提取能力与分割精度. 再使用hard-swish激活函数代替ReLU激活函数, 更加平滑的曲线有助于提高泛化性和非线性特征提取能力, 防止梯度消失. 最后, 通过使用结合交叉熵Dice损失函数, 加强模型对分割结果的约束, 进一步提升分割精度. 实验采用了由7种草莓病害2500张图像组成的数据集, 在复杂背景下对草莓病害进行分割, 语义分割像素精度达到92.56%, 平均交并比达到84.97%. 实验结果表明, 本文的改进UNet在草莓病害语义分割方面, 能实现更好的分割效果, 优于大多数分割模型.
    优先出版日期:  2023-04-23 , DOI: 10.15888/j.cnki.csa.009166
    摘要:
    图神经网络在半监督节点分类任务中取得了显著的性能. 研究表明, 图神经网络容易受到干扰, 因此目前已有研究涉及图神经网络的对抗鲁棒性. 然而, 基于梯度的攻击不能保证最优的扰动. 提出了一种基于梯度和结构的对抗性攻击方法, 增强了基于梯度的扰动. 该方法首先利用训练损失的一阶优化生成候选扰动集, 然后对候选集进行相似性评估, 根据评估结果排序并选择固定预算的修改以实现攻击. 通过在5个数据集上进行半监督节点分类任务来评估所提出的攻击方法. 实验结果表明, 在仅执行少量扰动的情况下, 节点分类精度显著下降, 明显优于现有攻击方法.
    优先出版日期:  2023-04-23 , DOI: 10.15888/j.cnki.csa.009124
    摘要:
    为最大程度地减少同步数据流语言编译过程中由编译器引入的错误, 需要利用形式化方法自动生成代码, 保证编译器产生的代码能够应用于核能仪控系统. 本研究使用定理证明工具Coq, 对同步数据流语言Lustre到Clight的主节点输入结构翻译阶段涉及的语法、语义及翻译算法进行了形式化定义, 并完成翻译算法的形式化证明. 研究表明这种经过形式化的编译器能够生成与源代码行为一致的可信目标代码, 同时生成的目标代码能够很好满足核能仪控系统的执行规范.
    优先出版日期:  2023-04-23 , DOI: 10.15888/j.cnki.csa.009128
    摘要:
    针对复杂环境下运动通信辐射源的无源定位, 闭式解方法对于时频差模型中的测量噪声敏感且存在定位均方根误差较大问题. 为了改善大观测误差下的定位性能, 本文提出一种加权最小二乘联合遗传算法的递推式混合TDOA/FDOA定位方法. 该方法首先利用已知站点观测大量时频差数据并建立误差模型, 基于模型对定位过程中的多组时频差序列进行数据处理; 其次通过加权最小二乘求解目标位置的初始值; 然后采用改进的遗传算法在初始值的基础上通过多组时频差序列不断迭代、递推求解, 修正位置坐标; 最后利用位置估计和频差模型完成对目标速度估计. 仿真结果表明, 本文定位算法相比于经典两步加权最小二乘法具有更低的均方根误差, 在大观测误差下能保持较高精度. 同时相比于其他混合定位算法收敛速度快, 可以有效减少计算量.
    优先出版日期:  2023-04-23 , DOI: 10.15888/j.cnki.csa.009129
    摘要:
    雷达在目标低仰角测高时存在严重的多径效应, 复杂阵地使多径回波产生无规律反射, 造成幅度与相位发生不同程度的畸变. 本文引入扰动多径模型, 解决经典多径模型与复杂阵地的多径回波反射不匹配问题, 研究基于扰动模型的合成导向矢量最大似然(synthesized vector maximum likelihood, SVML)测高方法. 该方法引入扰动参数表征复杂阵地的多径回波现象, 利用基于稀疏贝叶斯学习的扰动多径 (perturbational multipath sparse Bayesian learning, PSBL) 算法得到扰动参数, 应用于SVML算法, 提高了米波雷达在复杂阵地下的测高性能.
    优先出版日期:  2023-04-23 , DOI: 10.15888/j.cnki.csa.009136
    摘要:
    本文基于判别尺度空间跟踪算法, 将位置纠正方法和卡尔曼滤波算法应用于行人跟踪中. 为解决行人因形变和环境变化导致的跟踪不准确的问题, 本文充分利用fhog特征在行人跟踪上的优势, 以判别尺度空间算法中的位置滤波器所计算的位置为中心, 再次提取行人的fhog特征并将其与位置滤波器模板做相关运算, 以此纠正行人位置. 其次, 利用卡尔曼滤波算法对纠正后的行人位置进行预测和再次纠正, 最终在双重纠正的位置上训练新的位置滤波器模板. 本文选取OTB-100中的行人数据集对该方法进行性能测试, 实验结果表明, 在原算法位置上, 再次提取fhog特征进行相关运算能够纠正行人的位置, 同时卡尔曼滤波对纠正位置进行预测和再次纠正, 可使行人的定位精度再次提升.
    优先出版日期:  2023-04-20 , DOI: 10.15888/j.cnki.csa.009140
    摘要:
    现如今, 互联网中存在海量的医疗领域知识可以用于医疗病情诊断, 但传统的搜索引擎并无法根据病人的实际情况做出合理的判断, 无法满足使用需求. 因此, 本文主要开发基于知识图谱问答系统. 该系统面向医疗领域, 采用爬虫技术获取了大量医疗数据并将其存储在Neo4j图数据库构建医疗知识图谱中. 同时, 为了使系统能够进一步理解用户的医疗询问问句, 本文提出了基于BERT以及BERT-BiLSTM-CRF模型分别用于识别问句中的意图信息和实体信息的方法. 最后, 系统利用意图和实体信息在知识图谱中进行查询并为用户提供合适的回答, 完成了医疗问答系统的构建.
    优先出版日期:  2023-04-20 , DOI: 10.15888/j.cnki.csa.009142
    摘要:
    针对麻雀搜索算法容易因初始种群的多样性不足, 导致算法的搜索能力下降; 以及在搜索后期, 算法容易陷入到局部最优的问题, 提出一种多策略融合的麻雀搜索算法(multi-strategy fusion sparrow search algorithm, ISSA). 在算法初始化阶段, 引入高维Sine混沌映射来初始化种群, 提高初始种群的质量, 增强种群多样性; 其次, 引入衰减因子, 作用在发现者阶段, 衰减因子的自适应性, 平衡了前期全局搜索和后期局部寻优的性能; 最后引入柯西变异和变化选择策略, 让搜索个体可以跳出局部限制继续搜索, 增强局部搜索能力. 随机抽取6个benchmark测试函数, 实验结果验证了ISSA在寻找最优值等方面相比原算法得到了有效的提升.
    优先出版日期:  2023-04-20 , DOI: 10.15888/j.cnki.csa.009143
    摘要:
    在光伏板缺陷分类领域中, 传统的缺陷分类手段和新兴的机器学习方法都存在局限性, 不足以满足光伏板缺陷分类需求, 急需更可靠的解决方案. 近些年来小样本学习以其能在有限量数据下快速学习并泛化到新任务的特点, 逐渐在各领域兴起, 给缺陷技术的优化带来新的思路. 在这里, 以典型的小样本学习方法——原型网络方法为基础, 提出了基于改进的原型网络的光伏板缺陷分类方法. 该方法调整了训练模式, 通过改进模型主干网络和相似性度量标准来有效解决原型网络对复杂样本的特征嵌入能力较差和模型精度一般的问题, 方法在经典的光伏板缺陷数据集进行了多次对比实验. 结果表明: 改进方法的实验耗时大大缩短, 模型精度得到提高.
    优先出版日期:  2023-04-20 , DOI: 10.15888/j.cnki.csa.009162
    摘要:
    针对工业场景下设备资源有限的情况, 提出一种改进YOLOv5的轻量化带钢缺陷检测模型. 首先, 使用ShuffleNetv2代替主干特征提取网络, 优化模型参数量和运行速度; 其次, 采用轻量级上采样算子CARAFE (content-aware reassembly of features), 在增大感受野的同时进一步降低参数和计算量; 同时引入GSConv层, 在保证语义信息的同时平衡模型准确性与检测速度; 最后, 设计一种跨层级特征融合机制, 提高网络的检测精度. 实验结果表明, 改进后的模型的平均检测精度为78.5%, 相较于原始YOLOv5算法提升了1.4%; 模型计算量为10.9 GFLOPs, 参数量为5.88×106, 计算量和参数量分别降低31%和15.4%; 检测速度为49 f/s, 提升了3.5 f/s. 因此, 改进后的模型提高了检测精度和检测速度, 并且大幅降低了模型的计算量和参数量, 能够满足对带钢表面缺陷进行实时检测.
    优先出版日期:  2023-04-20 , DOI: 10.15888/j.cnki.csa.009153
    摘要:
    医学三维图像(如CT、MRI等)和二维图像(如X光)的配准技术已经被广泛应用于临床诊断和手术规划中. 医学图像配准的实质为使用优化算法寻找某种空间变换, 使两张图像在空间以及结构上对齐. 配准过程中往往由于优化算法寻优精度不高、易陷入局部极值的问题导致配准质量低. 针对此问题, 提出一种改进的平衡优化器算法(improved equilibrium optimizer based on Logistic-Tent chaos map and Levy flight, LTEO), 首先针对种群初始化容易分布不均匀, 且随机性太高的问题, 引入Logistic-Tent混沌映射对种群进行初始化, 提高种群多样性, 使它们尽可能的分布于搜索空间内; 对迭代函数进行更新, 使得优化算法更注重全局范围的搜索, 提高算法收敛速度并利于找到全局最优解; 引入Levy飞行策略对停滞粒子进行扰动, 防止算法陷入局部极值. 最后将改进的平衡优化器算法用于2D/3D医学图像配准任务, 并对配准过程中数据的频繁传输进行优化, 降低配准耗时. 通过基准函数测试和临床配准实验对算法进行验证, 改进后的平衡优化器可有效提高寻优精度和稳定性, 并提高医学图像配准的质量.
    优先出版日期:  2023-04-20 , DOI: 10.15888/j.cnki.csa.009156
    摘要:
    跳板在海上平台作业现场扮演着重要角色. 未搭设跳板对作业现场造成了极大的安全隐患. 为消除此隐患, 提出一种靠船排场景下的跳板搭设检测方法. 本方法分为3个部分: 首先利用目标检测算法定位并标注目标; 之后对标注目标区域进行边缘检测, 提取其外接边缘; 最终制定特定安全措施判别算法识别作业现场违规动作. 本方法为解决小目标等检测问题, 对YOLOv5进行改进, 在特征提取以及特征融合时引入注意力模块, 将均值平均精度由53.1%提高至54.5%的同时模型更加轻量化; 为解决检测边缘粗犷问题, 对边缘检测网络PiDiNet损失函数进行改进, 相较于原网络, 误检率由8.9%下降至5.4%. 经过验证, 利用该方法可以在有效时间内, 检测出跳板是否正确搭设, 准确率为91.5%.
    优先出版日期:  2023-04-20 , DOI: 10.15888/j.cnki.csa.009138
    摘要:
    针对现有人脸图像翻译模型不能实现多个视觉属性之间的翻译及翻译后的人脸图像不清晰自然的问题, 提出了基于人脸识别方法的人脸多属性图像翻译模型. 模型主要由内容和风格编码器、AdaIN解码器以及人脸识别模块构成. 首先, 两个编码器提取内容和风格图像的潜在编码, 然后将编码送入到AdaIN层中仿射变换, 最后解码器还原翻译后的图像. 该方法设计并训练了一个准确率90.282%的人脸识别模型并提出了一种联合人脸属性损失函数, 增强了模型对风格人脸的属性的关注程度, 解决了模型不能准确提取到人脸的属性信息以及摒弃了无关信息, 使得模型能够生成清晰的、多属性的, 多样的人脸翻译图像. 该方法在公开的数据集CelebA-HQ实验并在定量和定性指标上都高于基线方法, 在不同的人脸朝向时也表现出良好的鲁棒性. 模型生成的图像还能应用于人脸图像生成领域, 解决数据集匮乏等问题.
    优先出版日期:  2023-04-17 , DOI: 10.15888/j.cnki.csa.008936
    摘要:
    教育是实现可持续发展目标的重要推动因素, 为了实现可持续发展目标, 人工智能(AI)是一项蓬勃发展的技术, 人们对理解学生行为和评估学生表现越来越感兴趣, 人工智能在改善教育方面有着巨大的潜力, 因为它已经开始在教育领域被开发出创新的教学方法, 以创造更好的学习. 介绍了一种基于人工智能的分析工具, 用于预测某所大学一年级信息技术课的学生表现, 建立了基于随机森林的分类模型, 预测第6周学生的学习成绩, 准确率为97.03%, 敏感性为95.26%, 特异性为98.8%, 精密度为98.86%, 马修斯相关系数为94%, 证明了这种方法在预测学生课程的早期表现, 非常有用. 在COVID-19疫情期间, 实验结果表明, 建议的预测模型满足预测虚拟教育系统中学生的学习行为要素所需的准确性、精确度和召回率.
    优先出版日期:  2023-04-17 , DOI: 10.15888/j.cnki.csa.009108
    摘要:
    经典的人工蜂群(artificial bee colony, ABC)算法面临着收敛速度慢、易陷入局部最优等不足, 因此基于该算法来进行特征选择还存在很多问题. 对此, 提出了一种基于粒度粗糙熵与改进蜂群算法的特征选择方法FS_GREIABC. 首先, 将粗糙集中的知识粒度与粗糙熵有机地结合起来, 提出一种新的信息熵模型——粒度粗糙熵; 其次, 将粒度粗糙熵应用于ABC算法中, 提出一种基于粒度粗糙熵的适应度函数, 从而获得了一种新的适应度计算策略; 第三, 为了提高ABC算法的局部搜索能力, 将云模型引入到跟随蜂阶段. 在多个UCI数据集以及软件缺陷预测数据集上的实验表明, 相对于现有的特征选择算法, FS_GREIABC不仅能够选择较少的特征, 而且具有更好的分类性能.
    优先出版日期:  2023-04-17 , DOI: 10.15888/j.cnki.csa.009157
    摘要:
    在当前自然语言处理多意图识别模型研究中, 存在建模方式均为从意图到插槽的单一方向的信息流建模, 忽视了插槽到意图的信息流交互建模研究, 意图识别任务易于混淆且错误捕获其他意图信息, 上下文语义特征提取质量不佳, 有待进一步提升等问题. 本文以当前先进的典型代表GL-GIN模型为基础, 进行优化改进, 探索了插槽到意图的交互建模方法, 运用槽到意图的单向注意力层, 计算插槽到意图的注意力得分, 纳入注意力机制, 利用插槽到意图的注意力得分作为连接权重, 使其可以传播和聚集与意图相关的插槽信息, 使意图重点关注与其相关的插槽信息, 从而实现多意图识别模型的双向信息流动; 同时, 引入BERT模型作为编码层, 以提升了语义特征提取质量. 实验表明, 该交互建模方法效果提升明显, 与原GL-GIN模型相比, 在两个公共数据集(MixATIS和MixSNIPS)上, 新模型的总准确率分别提高了5.2%和9%.
    优先出版日期:  2023-04-14 , DOI: 10.15888/j.cnki.csa.009133
    摘要:
    异常检测系统在网络空间安全中起着至关重要的作用, 为网络安全提供有效的保障. 对于复杂的网络流量信息, 传统的单一的分类器往往无法同时具备较高检测精确度和较强的泛化能力. 此外, 基于全特征的异常检测模型往往会受到冗余特征的干扰, 影响检测的效率和精度. 针对这些问题, 本文提出了一种基于平均特征重要性的特征选择和集成学习的模型, 选取决策树(DT)、随机森林(RF)、额外树(ET)作为基分类器, 建立投票集成模型, 并基于基尼系数计算基分类器的平均特征重要性进行特征选择. 在多个数据集上的实验评估结果表明, 本文提出的集成模型优于经典集成学习模型及其他著名异常检测集成模型. 且提出的基于平均特征重要性的特征选择方法可以使集成模型准确率平均进一步提升约0.13%, 训练时间平均节省约30%.
    优先出版日期:  2023-04-14 , DOI: 10.15888/j.cnki.csa.009126
    摘要:
    域适应是一种在训练集和测试集不满足独立同分布条件时使用的迁移学习算法. 当两个领域间的分布差异较大时, 会降低域内可迁移性, 并且现有域适应算法需要获取大量的目标域数据, 这在一些实际应用中无法实现. 针对现有域适应方法的不足, 基于卷积神经网络提出小样本学习下的基于特征中心对齐的域适应算法, 寻找域不变特征的同时, 提高目标域特征的可区分度, 提高分类效果. 面向小样本条件下的office-31公共数据集识别和雷达工作模式识别的仿真实验结果表明, 所提方法对office-31数据集的平均识别精度比最大均值差异方法提升12.9%, 而对雷达工作模式识别精度达到91%, 比最大均值差异方法性能提升10%.
    优先出版日期:  2023-04-14 , DOI: 10.15888/j.cnki.csa.009127
    摘要:
    在施工现场中, 发生过许多高空坠落事故, 因此在施工现场佩戴安全帽是十分有必要的. 针对安全帽佩戴状况检测中遇到的小目标样本缺检、漏检的情况, 提出一种基于YOLOX-s的改进算法. 首先, 在Neck层引入主干特征提取网络中的160×160特征层进行特征融合, 并且增加了一个针对小目标的检测头; 其次, 采用SIoU损失函数计算损失值, 使得网络在训练过程中考虑的损失项更加全面; 并且采用varifocal loss函数来计算置信度损失值, 进一步改善训练过程中存在的正样本与困难样本不均衡的问题, 最后, 采用CA (coordinate attention)注意力机制来增强模型的特征表达能力. 实验结果表明, 通过对Neck层与检测层、损失函数的优化以及引入CA注意力机制, 使得网络在训练过程中收敛与回归性能更佳. 改进后的算法的mAP值为95.57%, 相较于YOLOv3及原YOLOX-s算法在mAP值上分别提高了17.11%、3.59%. 改进后的算法检测速度为54.73帧/s, 符合实时检测速度要求.
    优先出版日期:  2023-04-14 , DOI: 10.15888/j.cnki.csa.009122
    摘要:
    用户画像是对用户形象的勾勒与描述, 现已广泛应用于睡眠会员唤醒, 用户到店预测, 个性化推荐等典型零售场景, 药品不同于普通商品, 包含较强的语义知识, 现有用户画像主要从消费属性和静态属性出发, 不能完全适用于药店销售和预测领域. 本文提出了一种针对药品领域的用户画像模型UPP (persona of pharmacy user), 在现有画像的基础上嵌入医药知识, 利用规则, 聚类, 统计, 实体识别等方法提取慢病、疾病、特殊病类、活动敏感度、用户价值、价格偏好等新标签. 将所有标签融入一种基于聚类的群体划分方法, 形成用户画像. 实验表明, 该模型相较于现有的用户画像模型, 在消费行为预测场景下精准率提高了13%, 更加适用于药店营销场景.
    优先出版日期:  2023-04-14 , DOI: 10.15888/j.cnki.csa.009116
    摘要:
    针对目前大多数方面级情感分析方法存在着没有重点关注局部上下文中关键词特征的问题. 本文提出了一种基于局部上下文关键词特征提取及增强的方面级情感分析模型LCPM (local context pos mask). 首先提出了局部上下文词性掩码机制, 提取方面词周围重要词的特征, 减少噪声词的干扰. 其次对损失函数进行修改, 让模型重点关注与方面词有关的局部上下文关键词特征, 提升模型情感分类的表现. 最后设计了一种门控机制, 模型可以动态学习权重系数, 给局部上下文关键词特征和全局上下文特征分配不同的权重系数. 在4个公开数据集上的实验结果表明, 与现有的方面级情感分析模型相比, 准确率和MF1值都有提高, 验证了局部上下文关键词提取及增强的有效性, 在方面级情感分析任务上有较大的应用价值.
    优先出版日期:  2023-04-14 , DOI: 10.15888/j.cnki.csa.009117
    摘要:
    近年来基于anchor-free的检测方法相继被提出, 它们采取将目标转化为关键点, 并在全局高斯热图中进行正负样本的标签分配. 这种标签分配策略在一些场景中存在正负样本不平衡的问题, 而且在甲状旁腺检测中不能有效反映目标的形状和方向. 因此, 本文提出了一种新的甲状旁腺检测模型EllipseNet, 首先在GT中构建椭圆形状的高斯分布, 拟合GT中的真正目标, 使得正负样本的分配更加细粒度; 同时提出融入目标形状信息的损失函数对目标的位置进行约束, 进一步提高检测的精度. 此外, 模型中构建了多尺度预测, 能够更好地检测不同大小的目标, 解决甲状旁腺检测中目标尺度不平衡的问题. 本文在甲状旁腺数据集上进行实验, 结果表明, EllipseNet的AP50达到95%, 相比多种主流的检测算法, 其检测精度有较大的提升.
    优先出版日期:  2023-03-24 , DOI: 10.15888/j.cnki.csa.009091
    摘要:
    重污染天气是“十四五”时期大气污染治理的重点工作, 在重污染天气时期对风险源进行精准识别, 可以及时发出预警, 做好环境污染治理, 防止污染事件进一步加重. 基于网格化监测技术获取的数据, 本文提出一种结合残差网络(ResNet)、图卷积网络(GCN)和门控循环网络(GRU)的深度学习模型ResGCN-GRU, 该模型主要应用于重污染天气时期识别风险源. 重污染天气的风险源往往都是区域性的, 具有明显的时空特征, 因而本文先利用GCN网络提取监测点位之间的空间特征, 同时利用ResNet解决多层GCN带来的过平滑以及梯度消失问题; 再利用GRU提取风险源的时间特征, 最后将全连接层融合的时空特征输入到Softmax激活函数得到二分类概率值, 再根据概率值得到分类结果. 为验证本文提出的模型性能, 本文基于沈阳市72个监测点位的数据, 通过精确度、召回率以及综合评价指标对GCN、LSTM、GRU和GCN-GRU进行对比, 实验结果表明ResGCN-GRU模型分类效果的精确度分别要好16.9%、4.3%、3.1%、2.9%, 证明了本文提出的模型在大气风险源识别方面更加有效, 可以根据风险源数据的时空特征达到对风险源的精准识别.
    优先出版日期:  2023-03-24 , DOI: 10.15888/j.cnki.csa.009118
    摘要:
    目前很多处理图数据的图神经网络方法被提出, 然而大多数研究侧重于对特征聚合的卷积层的研究而不是进行下采样的池化层. 此外, 形成聚类簇的池化方式需要额外计算分配矩阵; 节点得分的池化方式排名方式单一. 为解决上述问题, 提高图分类任务的准确性, 本文提出了一种新的基于多维度信息的图池化算子MDPool. 该模型使用节点特征信息以及图拓扑结构信息, 获取不同维度下的节点得分. 使用注意力机制归纳不同维度下的得分权重, 生成更为健壮的节点排名, 基于节点排名自适应选择节点集合生成诱导子图. 提出的MDPool可以集成到多种的图神经网络结构, 将MDPool池化算子与图神经网络卷积层堆叠形成编码解码模型EDMDPool. 在4个公开数据集的图分类任务中, EDMDPool均高于现有基线模型.
    优先出版日期:  2023-03-24 , DOI: 10.15888/j.cnki.csa.009114
    摘要:
    针对增量式入侵检测算法由于对旧知识产生灾难性遗忘而导致对旧类别数据分类准确率不高的问题, 本文提出了一种基于非对称式多特征融合自动编码器(asymmetric multi-feature fusion auto-encoder, AMAE)和全连接分类神经网络(classification deep neural network, C-DNN)的增量式入侵检测算法(ImFace). 在增量学习阶段, ImFace会为每一批新的数据集训练一个AMAE模型和C-DNN模型. 同时, 本文通过使用变分自动编码器(variational auto-encoder, VAE)对数据进行过采样的方式来改善由于数据集不平衡而导致C-DNN对某些类别数据的检测能力不足的问题. 在检测阶段, ImFace将输入数据经过所有AMAE和C-DNN, 然后将AMAE的结果作为置信度来选择某一个C-DNN的输出结果作为最终结果. 本文使用CICIDS2017数据集来检验ImFace算法的有效性. 实验结果表明, ImFace算法不仅能够保留对旧类别的分类能力, 同时对新类别的数据也有很高的检测准确率.
    优先出版日期:  2023-03-17 , DOI: 10.15888/j.cnki.csa.009115
    摘要:
    随着天气雷达新技术的发展, 传统单一封闭式的雷达产品生成系统已不能较好地适应新体制天气雷达系统快速的探测速率和多源的数据形式. 为了提高雷达产品生成系统的实时性和可扩展性, 本文提出一种基于消息调度的分布式雷达产品生成系统. 基于ActiveMQ消息中间件设计了分布式集群的任务调度策略, 采用Ceph分布式文件系统构建统一高效的存储服务, 并利用GPU实现了对气象算法的并行加速. 目前系统已在实际项目中交付使用, 取得了良好的运行效果, 具有一定的推广价值和应用意义.
    优先出版日期:  2023-03-17 , DOI: 10.15888/j.cnki.csa.009113
    摘要:
    针对现有的皮肤黑色素瘤病灶分割精度不高的问题, 结合现有卷积神经网络方法提出皮肤黑色素瘤图像分割方法MultiResUNet-SMIS.首先, 依据皮肤黑色素瘤成像特点, 引入不同空洞率的空洞卷积替换普通卷积, 在参数量相同的前提下扩大感受野, 使网络模型能够适用于多尺度病灶分割任务; 其次加入空间和通道注意力机制以重新分配特征权重, 扩大感兴趣特征影响, 抑制无关特征; 最后融合Focal loss与Dice loss提出一种新的loss函数FD loss用于计算回归损失, 解决前景背景像素不均衡问题, 进一步提高网络模型的分割精度. 实验结果表明, MultiResUNet-SMIS在ISIC-2018数据集上的Dice指数、IoU指数以及Acc准确率分别达到了89.47%、82.67%、96.13%, 与原MultiResUNet以及UNet、UNet++、DeepLab V3+等主流方法相比, MultiResUNet-SMIS在皮肤黑色素瘤图像分割中具有更好的效果.
    优先出版日期:  2022-09-01 , DOI: 10.15888/j.cnki.csa.008808
    [摘要] (188) [HTML] (0) [PDF 1.29 M] (352)
    摘要:
    作为衡量空气污染物浓度的重要指标, 对PM2.5浓度进行监控预测, 能够有效地保护大气环境, 进一步地减少空气污染带来的危害. 随着空气质量自动监测站的大范围建立, 由传统的机器学习搭建的空气质量预测模型已经不能满足当今的需求. 本文提出了一种基于多头注意力机制和高斯概率估计的高斯-注意力预测模型, 并对沈阳市某监测站点的数据进行了训练和测试. 该模型考虑了PM2.5浓度受到其他空气质量数据的影响, 将空气质量数据的分层时间戳(周、日、小时)的信息对齐作为输入, 使用多头注意力机制对于不同子空间的时间序列关联特征进行提取, 能够获得更加完善有效的特征信息, 再经过高斯似然估计得到预测结果. 通过与多种基准模型进行对比, 相较于性能较优的DeepAR, 高斯-注意力预测模型的MSE、MAE分别下降了21%、15%, 有效地提高了预测准确率, 能够较准确地预测出PM2.5浓度.
    优先出版日期:  2022-03-31 , DOI: 10.15888/j.cnki.csa.008603
    [摘要] (219) [HTML] (8) [PDF 1.10 M] (6159)
    摘要:
    电力能源的安全在国家安全中占有重要的地位. 随着电力5G通信技术的发展, 大量电力终端产生定位需求. 传统GPS定位方法存在易受欺骗的问题, 如何有效提升GPS定位的安全性成为一个亟待研究的问题. 本文提出了一种基于基站辅助的电力5G终端GPS欺骗检测算法, 利用安全性较高的基站定位来检验可能被欺骗的GPS定位, 并且引入了一致性因数用来描述GPS定位结果和基站定位结果的一致性. 通过计算一致性因数, 如果大于设定的阈值则判断发生欺骗, 反之则GPS工作正常. 实验表明, 在使用本论文模型情况下, 本算法的准确率为99.98%, 优于传统机器学习分类算法. 此外, 本方法在运行速度上相较于传统机器学习分类算法也有一定程度的提升.
  • 全文下载排行(总排行年度排行各期排行)
    摘要点击排行(总排行年度排行各期排行)

  • 快速检索
    过刊检索
    全选反选导出
    显示模式:
    2000,9(2):38-41, DOI:
    [摘要] (12115) [HTML] (0) [PDF ] (18570)
    摘要:
    本文详细讨论了VRML技术与其他数据访问技术相结合 ,实现对数据库实时交互的技术实现方法 ,并简要阐述了相关技术规范的语法结构和技术要求。所用技术手段安全可靠 ,具有良好的实际应用表现 ,便于系统移植。
    1993,2(8):41-42, DOI:
    [摘要] (8948) [HTML] (0) [PDF ] (28398)
    摘要:
    本文介绍了作者近年来应用工具软件NU清除磁盘引导区和硬盘主引导区病毒、修复引导区损坏磁盘的 经验,经实践检验,简便有效。
    1995,4(5):2-5, DOI:
    [摘要] (8592) [HTML] (0) [PDF ] (10645)
    摘要:
    本文简要介绍了海关EDI自动化通关系统的定义概况及重要意义,对该EDI应用系统下的业务运作模式所涉及的法律问题,采用EDIFACT国际标准问题、网络与软件技术问题,以及工程管理问题进行了结合实际的分析。
    2016,25(8):1-7, DOI: 10.15888/j.cnki.csa.005283
    [摘要] (7693) [HTML] () [PDF 1167952] (31821)
    摘要:
    从2006年开始,深度神经网络在图像/语音识别、自动驾驶等大数据处理和人工智能领域中都取得了巨大成功,其中无监督学习方法作为深度神经网络中的预训练方法为深度神经网络的成功起到了非常重要的作用. 为此,对深度学习中的无监督学习方法进行了介绍和分析,主要总结了两类常用的无监督学习方法,即确定型的自编码方法和基于概率型受限玻尔兹曼机的对比散度等学习方法,并介绍了这两类方法在深度学习系统中的应用,最后对无监督学习面临的问题和挑战进行了总结和展望.
    2011,20(11):80-85, DOI:
    [摘要] (7092) [HTML] () [PDF 863160] (37571)
    摘要:
    在研究了目前主流的视频转码方案基础上,提出了一种分布式转码系统。系统采用HDFS(HadoopDistributed File System)进行视频存储,利用MapReduce 思想和FFMPEG 进行分布式转码。详细讨论了视频分布式存储时的分段策略,以及分段大小对存取时间的影响。同时,定义了视频存储和转换的元数据格式。提出了基于MapReduce 编程框架的分布式转码方案,即Mapper 端进行转码和Reducer 端进行视频合并。实验数据显示了转码时间随视频分段大小和转码机器数量不同而变化的趋势。结
    2008,17(5):122-126, DOI:
    [摘要] (7085) [HTML] (0) [PDF ] (42745)
    摘要:
    随着Internet的迅速发展,网络资源越来越丰富,人们如何从网络上抽取信息也变得至关重要,尤其是占网络资源80%的Deep Web信息检索更是人们应该倍加关注的难点问题。为了更好的研究Deep Web爬虫技术,本文对有关Deep Web爬虫的内容进行了全面、详细地介绍。首先对Deep Web爬虫的定义及研究目标进行了阐述,接着介绍了近年来国内外关于Deep Web爬虫的研究进展,并对其加以分析。在此基础上展望了Deep Web爬虫的研究趋势,为下一步的研究奠定了基础。
    1999,8(7):43-46, DOI:
    [摘要] (6670) [HTML] (0) [PDF ] (20166)
    摘要:
    用较少的颜色来表示较大的色彩空间一直是人们研究的课题,本文详细讨论了半色调技术和抖动技术,并将它们扩展到实用的真彩色空间来讨论,并给出了实现的算法。
    2007,16(9):22-25, DOI:
    [摘要] (6119) [HTML] (0) [PDF ] (3738)
    摘要:
    本文结合物流遗留系统的实际安全状态,分析了面向对象的编程思想在横切关注点和核心关注点处理上的不足,指出面向方面的编程思想解决方案对系统进行分离关注点处理的优势,并对面向方面的编程的一种具体实现AspectJ进行分析,提出了一种依据AspectJ对遗留物流系统进行IC卡安全进化的方法.
    2012,21(3):260-264, DOI:
    [摘要] (5646) [HTML] () [PDF 336300] (40266)
    摘要:
    开放平台的核心问题是用户验证和授权问题,OAuth 是目前国际通用的授权方式,它的特点是不需要用户在第三方应用输入用户名及密码,就可以申请访问该用户的受保护资源。OAuth 最新版本是OAuth2.0,其认证与授权的流程更简单、更安全。研究了OAuth2.0 的工作原理,分析了刷新访问令牌的工作流程,并给出了OAuth2.0 服务器端的设计方案和具体的应用实例。
    2011,20(7):184-187,120, DOI:
    [摘要] (5643) [HTML] () [PDF 731903] (27522)
    摘要:
    针对智能家居、环境监测等的实际要求,设计了一种远距离通讯的无线传感器节点。该系统采用集射频与控制器于一体的第二代片上系统CC2530 为核心模块,外接CC2591 射频前端功放模块;软件上基于ZigBee2006 协议栈,在ZStack 通用模块基础上实现应用层各项功能。介绍了基于ZigBee 协议构建无线数据采集网络,给出了传感器节点、协调器节点的硬件设计原理图及软件流程图。实验证明节点性能良好、通讯可靠,通讯距离较TI 第一代产品有明显增大。
    2004,13(10):7-9, DOI:
    [摘要] (5549) [HTML] (0) [PDF ] (8317)
    摘要:
    本文介绍了车辆监控系统的组成,研究了如何应用Rockwell GPS OEM板和WISMOQUIKQ2406B模块进行移动单元的软硬件设计,以及监控中心 GIS软件的设计.重点介绍嵌入TCP/IP协议处理的Q2406B模块如何通过AT指令接入Internet以及如何和监控中心传输TCP数据.
    2008,17(8):87-89, DOI:
    [摘要] (5434) [HTML] (0) [PDF ] (37382)
    摘要:
    随着面向对象软件开发技术的广泛应用和软件测试自动化的要求,基于模型的软件测试逐渐得到了软件开发人员和软件测试人员的认可和接受。基于模型的软件测试是软件编码阶段的主要测试方法之一,具有测试效率高、排除逻辑复杂故障测试效果好等特点。但是误报、漏报和故障机理有待进一步研究。对主要的测试模型进行了分析和分类,同时,对故障密度等参数进行了初步的分析;最后,提出了一种基于模型的软件测试流程。
    2008,17(1):113-116, DOI:
    [摘要] (5424) [HTML] (0) [PDF ] (45360)
    摘要:
    排序是计算机程序设计中一种重要操作,本文论述了C语言中快速排序算法的改进,即快速排序与直接插入排序算法相结合的实现过程。在C语言程序设计中,实现大量的内部排序应用时,所寻求的目的就是找到一个简单、有效、快捷的算法。本文着重阐述快速排序的改进与提高过程,从基本的性能特征到基本的算法改进,通过不断的分析,实验,最后得出最佳的改进算法。
    2008,17(8):2-5, DOI:
    [摘要] (5356) [HTML] (0) [PDF ] (28543)
    摘要:
    本文介绍了一个企业信息门户中单点登录系统的设计与实现。系统实现了一个基于Java EE架构的结合凭证加密和Web Services的单点登录系统,对门户用户进行统一认证和访问控制。论文详细阐述了该系统的总体结构、设计思想、工作原理和具体实现方案,目前系统已在部分省市的广电行业信息门户平台中得到了良好的应用。
    2004,13(8):58-59, DOI:
    [摘要] (5251) [HTML] (0) [PDF ] (24595)
    摘要:
    本文介绍了Visual C++6.0在对话框的多个文本框之间,通过回车键转移焦点的几种方法,并提出了一个改进方法.
    2009,18(3):164-167, DOI:
    [摘要] (5184) [HTML] (0) [PDF ] (24357)
    摘要:
    介绍了一种基于DWGDirectX在不依赖于AutoCAD平台的情况下实现DWG文件的显示、操作、添加的简单的实体的方法,并对该方法进行了分析和实现。
    2009,18(5):182-185, DOI:
    [摘要] (5178) [HTML] (0) [PDF ] (28479)
    摘要:
    DICOM 是医学图像存储和传输的国际标准,DCMTK 是免费开源的针对DICOM 标准的开发包。解读DICOM 文件格式并解决DICOM 医学图像显示问题是医学图像处理的基础,对医学影像技术的研究具有重要意义。解读了DICOM 文件格式并介绍了调窗处理的原理,利用VC++和DCMTK 实现医学图像显示和调窗功能。
    2010,19(10):42-46, DOI:
    [摘要] (5177) [HTML] () [PDF 1301305] (18550)
    摘要:
    综合考虑基于构件组装技术的虚拟实验室的系统需求,分析了工作流驱动的动态虚拟实验室的业务处理模型,介绍了轻量级J2EE框架(SSH)与工作流系统(Shark和JaWE)的集成模型,提出了一种轻量级J2EE框架下工作流驱动的动态虚拟实验室的设计和实现方法,给出了虚拟实验项目的实现机制、数据流和控制流的管理方法,以及实验流程的动态组装方法,最后,以应用实例说明了本文方法的有效性。
    2003,12(1):62-65, DOI:
    [摘要] (5056) [HTML] (0) [PDF ] (12590)
    摘要:
    本文介绍了一种将DTD转换成ER图,并用XMLApplication将ER图描述成转换标准,然后根据该转换标准将XML文档转换为关系模型的方法.
  • 全文下载排行(总排行年度排行各期排行)
    摘要点击排行(总排行年度排行各期排行)

  • 快速检索
    过刊检索
    全选反选导出
    显示模式:
    2007,16(10):48-51, DOI:
    [摘要] (4382) [HTML] (0) [PDF 0.00 Byte] (84559)
    摘要:
    论文对HDF数据格式和函数库进行研究,重点以栅格图像为例,详细论述如何利用VC++.net和VC#.net对光栅数据进行读取与处理,然后根据所得到的象素矩阵用描点法显示图像.论文是以国家气象中心开发Micaps3.0(气象信息综合分析处理系统)的课题研究为背景的.
    2002,11(12):67-68, DOI:
    [摘要] (3341) [HTML] (0) [PDF 0.00 Byte] (56078)
    摘要:
    本文介绍非实时操作系统Windows 2000下,利用VisualC++6.0开发实时数据采集的方法.所用到的数据采集卡是研华的PCL-818L.借助数据采集卡PCL-818L的DLLs中的API函数,提出三种实现高速实时数据采集的方法及优缺点.
    2008,17(1):113-116, DOI:
    [摘要] (5424) [HTML] (0) [PDF 0.00 Byte] (45360)
    摘要:
    排序是计算机程序设计中一种重要操作,本文论述了C语言中快速排序算法的改进,即快速排序与直接插入排序算法相结合的实现过程。在C语言程序设计中,实现大量的内部排序应用时,所寻求的目的就是找到一个简单、有效、快捷的算法。本文着重阐述快速排序的改进与提高过程,从基本的性能特征到基本的算法改进,通过不断的分析,实验,最后得出最佳的改进算法。
    2008,17(5):122-126, DOI:
    [摘要] (7085) [HTML] (0) [PDF 0.00 Byte] (42745)
    摘要:
    随着Internet的迅速发展,网络资源越来越丰富,人们如何从网络上抽取信息也变得至关重要,尤其是占网络资源80%的Deep Web信息检索更是人们应该倍加关注的难点问题。为了更好的研究Deep Web爬虫技术,本文对有关Deep Web爬虫的内容进行了全面、详细地介绍。首先对Deep Web爬虫的定义及研究目标进行了阐述,接着介绍了近年来国内外关于Deep Web爬虫的研究进展,并对其加以分析。在此基础上展望了Deep Web爬虫的研究趋势,为下一步的研究奠定了基础。
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号