Prediction of Building Energy Consumption Generated by Adaptive Sequence
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This study proposes an energy consumption prediction method based on Reinforcement learning and Generative Adversarial Networks (Re-GANs). The algorithm constructs the generator and discriminator in Generative?Adversarial?Nets (GANs) into the Agent and reward function in reinforcement learning respectively. In the training process, the current real energy consumption sequence is taken as the input state of the Agent (generator), and a set of generation sequences with a fixed length is constructed. Combined with the discriminator and Monte-Carlo search method, the reward function of the current sequence is further constructed as a reward for the first subsequent energy consumption value of the real sample sequence. On this basis, the objective function of reward is constructed, and the optimal parameters are solved. Finally, the proposed algorithm is used to predict the public building energy consumption data of the Downing Street complex. The experimental results show that the proposed algorithm has higher prediction accuracy than the multi-layer perception machine, gated loop neural network, and convolution neural network.

    Reference
    Related
    Cited by
Get Citation

王悦,陈建平,傅启明,吴宏杰,陆悠.自适应序列生成的建筑能耗预测.计算机系统应用,2021,30(11):155-163

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 25,2021
  • Revised:February 24,2021
  • Adopted:
  • Online: October 22,2021
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063