Rate of Penetration Prediction Using Ensemble Transfer Learning
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the process of drilling, the speed at which a drill bit breaks through rock and deepens the drill hole is called the rate of penetration (ROP), which is an important index reflecting drilling efficiency. In recent years, machine learning methods have been applied to the ROP prediction. However, it is found in practice that the prediction accuracy of ROP based on existing machine learning methods is significantly reduced when applied to new oil fields, and the main reason is that the data available for learning and training in these new fields are usually scarce or even completely missing. Therefore, improving the prediction performance of ROP in new oil fields is an important issue to be solved. Considering this, a cross-oilfield ROP prediction method based on transfer learning is proposed, and a boosting transfer regression model with physical constraints is constructed to predict ROP of new oil fields. The experiments on real drilling datasets indicate that the proposed method is effective, and the prediction accuracy is significantly better than that of the current mainstream ROP prediction methods.

    Reference
    Related
    Cited by
Get Citation

杨顺辉,郭珍珍,张洪宝,高明亮.基于集成迁移学习的机械钻速预测.计算机系统应用,2022,31(10):270-278

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 07,2022
  • Revised:January 30,2022
  • Adopted:
  • Online: June 30,2022
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063