Nonlinear Process Fault Identification and Detection Based on KPCA-KDE
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The combination of kernel principal components analysis (KPCA) and control limits (CLS) based on Gaussian distribution will undermine the performance. The fault detection and identification method for nonlinear process based on kernel principal components analysis-kernel density estimation (KPCA-KDE) is proposed. kernel density estimation (KDE) technology is adopted to estimate the CLS based on KPCA for nonlinear process monitoring. According to the detection rate of all 20 faults in KPCA and KPCA-KDE, KDE has a higher fault detection rate than the corresponding method based on Gaussian distribution. In addition, KDE-based detection delay is equal to or lower than other methods. By changing the bandwidth and the number of reserved pivots during the fault detection, KPCA records a larger FAR while the KPCA-KDE does not record any false alarms. The application on the Tennessee Eastman (TE) process shows that KPCA-KDE has better monitoring performance in sensitivity and detection time than KPCA based on Gaussian CLS.

    Reference
    Related
    Cited by
Get Citation

郑天标,肖应旺.基于核主元分析与核密度估计的非线性过程故障监测与识别.计算机系统应用,2022,31(10):329-334

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 13,2022
  • Revised:February 17,2022
  • Adopted:
  • Online: July 15,2022
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063