Numerical Simulation of Electric Field Effect of Conductive Droplets in Electric Field
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To study the electric field effect of conductive droplets with low conductivity, an electrohydrodynamic atomization (EHDA) solver based on the leaky dielectric model and the volume of fluid (VOF) method is designed by the computational fluid dynamics (CFD) software OpenFOAM. The numerical results are compared with Taylor’s analytical values, and the simulation results predict the deformation ways of droplets and the mode of circumfluence inside and outside the droplets. It is found that under the action of an external electric field, the droplets will become “prolate” or “oblate” and form stable circumfluence inside, and they only undergo deformation without any macroscopic motion. As the intensity of the electric field increases, the deformation of the droplets also intensifies. In the case of small deformation, the simulated values are consistent with the analytical values, which verifies the correctness of the numerical method. When the droplet deformation is considerable, the simulation results start to deviate from the theoretical values, which is consistent with the experimental observations. In addition, the effect of the change in conductivity on droplet deformation is also apparent, while the evolution of the dielectric constant ratio has a less pronounced impact on droplet deformation.

    Reference
    Related
    Cited by
Get Citation

刘建河,杨海朋.电场中导电液滴电场效应的数值模拟.计算机系统应用,2022,31(11):339-348

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 10,2021
  • Revised:December 13,2021
  • Adopted:
  • Online: August 12,2022
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063