
 计 算 机 系 统 应 用 2009 年 第 6 期

 154

基于注解的服务编排
王 斌 黄鹤远 徐景民 朱 俊 (IBM 中国研究院 北京 100193)

Annotation-Based Service Orchestration

Bin Wang, Heyuan Huang, Jingmin Xu, Jun Zhu (IBM China Research Lab, Beijing 100193)

Abstract: Service orchestration plays a vital role in assembling services into business processes in a Service Oriented

Architecture. In current practices, the orchestrating logic is usually described by a process language, which is
therefore separated from the services in the system implemented by certain programming language. It
introduces two issues: 1) It cost additional efforts for developers to be proficient with a new process
language/script, and its running environment. 2) It causes development performance degradation due to
transformation efforts for process language and programming language, such as transforms Java services into
web services. To overcome these issues, this paper proposes a novel alternative system which takes advantage
of the annotation construct of Java programming language to represent business processes. Through the
experiments, we found that developers can efficiently develop business processes based on their current
proficient programming language skill using the proposed system to achieve the service orchestration.

Key words: service orchestration; annotation service; oriented architecture

1 Introduction
Web services orchestration refers to an executable

business process that can interact with both internal and
external Web services. The interactions occur at the
message level. They include business logic and task
execution order, and they can span applications and
organizations to define a long-lived, transactional, multis-
tep process model[1].
 Service orchestration plays a vital role in
assembling services into business processes in a Service
Oriented Architecture(SOA) In current practices, the
orchestration logic is usually described by programming
language neutral scripts(e.g. BPEL[2], Business Process
Execution Lan- guage, WSCI[3], Web Service
Choreography Interface, and etc), and can be executed
by their supporting orchestration engines. The process
logic is separated from the services in the system
implemented by certain programming language. In spite
of the greater flexibility this way introduces, it brings a
couple of issues at the meantime:

(1) The orchestration script is usually a different

language from the one developers use to develop the
services in the system. This requires the developers be
proficient on both languages and able to deal with the
introduced mediation issues such as variable mapping.
For example, BPELJ[4] is introduced to enable the
cooperation between Java and BPEL by enclosing
sections of Java code in XML. Obviously, a BPELJ
developer must spend efforts to learn BPEL and the
usage of Java within BPEL.

(2) The orchestration script can not be seamless
integrated into existing services environment naturally.
For example, BPEL can orchestrate web services only, if
one system contains many existing services with different
type, the BPEL process developer must transform these
non-web services into web services, this may degrade the
development performance.

(3) The orchestration script such as BPEL is usually
running in a different context from the original system,

2009 年 第 6 期 计 算 机 系 统 应 用

 155

which is shown in Fig.1.

Fig.1 Elements and degradation analysis in an

application system with Java and BPEL

The resulted runtime performance degradation is
caused by 2 points: (1) the newly introduced runtime
context(BPEL Runtime Context in Fig.1) needs to
re-define concepts like data types, service references, and
exception handling artifices that are duplicated from the
original system. This consumes additional system com-
puting resources and time. (2) Inter-process communica-
tion between two systems is also a big cost not acceptable
for some real-time process systems.

In order to cover these issues to some extent, this
paper proposes a novel alternative system which employs
annotations in Java programming language to represent
business processes. Existing Java language constructs
(such as method, field, and etc.) are annotated to specify
business activities, variables, service references, and etc
and therefore as the basis to provide the process
orchestration logic like sequencing, joining, splitting, and
etc. In contrast to introduce a new and complex script
language, this approach uses the programming language
plus simple annotations for representing the orchestration
logic. It not only relieves the developers from learning a
new language, but also boosts the build-time and runtime
performance of the orchestration engine.

In the following part, some related works in service
orchestration area are introduced with identified
limitations. Then, the syntax of the proposed annotation-
based approach is given with samples to model typical
process patterns. After that, the architecture of the system
to enable the approach is illustrated. Some experiments
were conducted to assess the proposed approach versus
existing approaches. The last section concludes this paper
and points out some future research directions.

2 Related Works
Currently, many WS-BPEL vendors have provided

web services-based orchestration system products, such
as the IBM Websphere Process Server, the Oracle BPEL
Process Manager, and the ActiveBPEL Engine. Besides
web service orchestration, JOpera and ESB (Enterprise
Service Bus) is proposed for legacy service composition.
They can integrate existing enterprise applications such
as RMI, EJB and etc.

The business process execution language (BPEL) is the
leading standard language for orchestration of Web services[5],
which defines a model and a XML based grammar for
describing the behavior of a business process based on the
interactions between the process and its partners.

WS-BPEL utilizes several XML specifications:
WSDL 1.1, XML Schema 1.0, XPath 1.0 and XSLT 1.0.
Obviously, XML language is different from the
programming language, which could be Java, C# and so
on. Considering the communication gap between these
different languages, performance degradation might
appear. Besides, WS-BPEL also has several other
limitations. First, based on the XML foundation, it is not
easy for a freshman to start from scratch. Secondly,
manipulating XML-based data is difficult and inefficient.

As the combination of BPEL and Java programming

language, BPELJ allows the two languages to be used

together to build business process applications. BPELJ

enables Java and BPEL to cooperate by enclosing

sections of Java code, called Java snippets. In order to

allow processes to use Java resources rather than Web

services, BPELJ makes it possible to create partner link

types whose interfaces are defined using Java interfaces

rather than WSDL port types.

Although BPELJ is allowed to communicate with
Java directly, it is still a kind of mixed language and the
gap between XML and Java may be a potential trouble.
The variables defined in XML Schema or WSDL message
needs map to Java variables and vice versa. Furthermore,
not every kind of Java type could be mapped to an XML
format. In addition, considering that the embedded Java
snippet is hard to reuse, it’s not a good design to mix Java
snippets into HTML for early JSP.

 计 算 机 系 统 应 用 2009 年 第 6 期

 156

3 Annotation-Based Process Modeling
Based on our analysis of some programming

languages, such as Java, we realized that these languages
provide additional constructs, such as annotation, which
could be leveraged to extend new syntax in a
non-intrusive way. In the meanwhile, existing constr-
ucts of the language could be leveraged to deal with data
manipulation, service invocation like logics required by
service orchestration. Thus, we don’t need to introduce a
dedicated service orchestration language.

In this section, we first give the syntax of our
annotation based approach. To prove the feasibility and
applicability of our approach for service orchestration,
we give some samples to model typical process patterns.
Furthermore, we introduce human-task activity modeling.
3.1 Annotation definition

We employ the annotations in Java language which
is published by Sun Microsystems Inc. in 2005.

There are three categories of annotations in our
system (1) Variables in Process (2) Activities in Process
(3) Service Binding.

(1) Variables in process, we need to indicate which
one is used for a process. It therefore could be saved for a
long-running process. Moreover, we need to set up the
linkage between the outside message and the process
instance for correlation. @Variable and @CorrelationSet
are introduced accordingly.

(2) Activities in process, such as invoke, receive and
so on, are specified by the second kind of annotation. For
example, there are @InvokeActivity and @Receive
Activity. Moreover, the control logics of a process (such
as parallel, merge, and choice) are also involved in this
category.

(3) The outside services referenced in the process
also need to be indicated explicitly; otherwise the progra-
mmer needs to take care of them in case like making a
web service call. @Reference is used in our system for
this purpose.

Below are the detailed definitions and descriptions
of the annotations used in the system:

[F] @Variable (name=String)
The @Variable annotation is applied on Java fields,

indicating that the fields are used in the process. The

“name” attribute is the same as the field’s name by
default.

[F] @CorrelationSet (name=String, fields=String[])
The @CorrelationSet is used to declare a linkage

between a set of fields and a process instance.
[M] @Start (name=String, post=String)
The @Start annotation is used to indicate the first

activity of a process.
[M] @End (name=String)
The @End annotation is used to indicate the end of

a process. The process instance is ended when the
annotated method is invoked.

[M] @InvokeActivity (name=String, pre=String[],
post=String)

The @InvokeActivity annotation is used to indicate
that the following method will call a referenced service
or outside application.

[M] @ReceiveActivity (name=String, pre=String[],
post=String)

The @ReceiveActivity annotation is used to indicate
that the process instance waits for a message, and the
message name is in its “pre” attribute.

[M] @AndSplit (name=String, post=String[])
The @AndSplit annotation is used to indicate that

the process splits to multi-threads to execute the
following activities in parallel after the annotated
method. The post attribute is a String collection, contains
all the following activities’ names.

[M] @AndJoin (name=String, pre=String[], post=
String)

The @AndJoin annotation is used to synchronize the
previously split activities. The annotated method will be
treated as a join activity to wait for the previously split
activities.

[M] @OrSplit (name=String, post=String[])
The @OrSplit annotation is used to indicate that

there is an exclusive choice; the run-time engine selects a
branch to continue the process. All candidates are
contained in the post attribute.

[M] @OrJoin (name=String, pre=String[], post=
String)

The @OrJoin annotation is used to merge previous
process branches. The “ pre ” attribute obviously

2009 年 第 6 期 计 算 机 系 统 应 用

 157

contains all previous activities’ names.
[M] @Message (name=String)
The @Message annotation is used to designate a

listener. When the annotated method is invoked from
outside partner, the related receive activity (The name
appears in ReceiveActvity’s “pre” attribute) is executed
automatically.

[F,M] @Reference (name=String, target=String)
The @Reference annotation can be employed both

on a Java field and a Java method. The purpose is to ask
the run-time engine to find and inject a service instance
which implements the service interface.
3.2 Typical process patterns modeling

In Service Oriented Architectures (SOA) workflow
modeling languages have found a good application to
define an executable model of the flow of information
between a set of services [6].

The control-flow perspective (or process) perspective
describes activities and their execution ordering through
different constructors, which permit flow of execution
control, e.g., sequence, splits, parallelism and join
synchronization[7]. The service orchestration logic
describes the interchange ordering of the message, so we
apply workflow patterns to model process.

Currently, most workflow languages support the basic
constructs of sequence, iteration, splits (AND and OR) and
joins (And and OR) [8]. In this section, we introduce the
usages of above annotations for each pattern.

(1) Sequence
There are 4 activities in Fig.2. “selectProducts”

follows“getProductList”; it is followed by “payMoney”,

and the last activity is “rsvProducts”. The code snippet

shows the usage of annotations without the details of
each activity itself.

Fig.2 Sequence pattern

(2) Parallel & synchronization
In Fig.3, activities“RsvHotel”,“RsvCar”, and

“RsvFlight”are executed simultaneously after “Reserv-

ation” activity. The “prepare” method is annotated with

@AndSplit and with the attribute “ post ” , which
indicates that it is followed by three activities: “hotel”,
“car”, and ”flight”.

Fig.3 Parallel & synchronization patterns

(3) Exclusive choice & simple merge
Fig.4 shows how to use annotations to model

selective branch. “Accept” and “Reject” is an opposite
pair and one of them is selected at run-time. The
condition is described in their previous activity “check”.

The “check” method returns a String value, which is the

selected result. The returned String value should be either
“accept” or “reject”. The following snippet is a sample of
this method.

(4) Arbitrary cycles
In Fig.5, if the guesser does not answer right, the

flow would start another round, making up a loop to keep
guessing until the answer is right. The “checkAnswer”

is also an“OrSplit”activity.

3.3 Human-task activity modeling
In order to enable human-task in a service

orchestration, we define three new annotations to model
the human-task activity.

[M]@HumanActivity(name=String,begin=String,
finish=String, post=String, roles=String[])
[M]@BeginWork(name=String)
[M]@FinishWork(name=String)

 计 算 机 系 统 应 用 2009 年 第 6 期

 158

Fig.4 Exclusive choice & simple merge patterns

Fig.5 Arbitrary cycles pattern

These three annotations are all used on methods.

They work together to describe one human-task activity.
The @HumanActivity annotation represents an activity
in the process like invoke or receive activity. It has three
important attributes: “begin”, “finish” and “roles”. The
“begin” attribute indicates the activity has begun when
the annotated method with @BeginWork and name of
“begin” is invoked. The “finish” attribute indicates the
activity has finished when the annotated method with
@FinishWork and name of “finish” is invoked. The
“roles” attribute indicates who can perform this activity.

4 Annotation-Based Service Orchestra-
tion System

To enable aforementioned annotation based service
orchestration, we implemented a supporting system
accordingly. In the following, we will illustrate the
architecture of the system and process registration/
execution steps respectively.

Fig.6 is the system architecture of the service

orchestration system.

Fig.6 The system architecture

The orchestration system is composed of following
main modules:(1) Process Definition (2)Administration &
Management (AM)(3)Human Task Client and (4) Engine.

(1) The Flow Definition module is composed of two
components. The first one is the visual process editor; it’s
a convenient tool for process designer to use. The second
is an annotation set which provides some built-in
annotations introduced in Section 3.

(2) Administration & Management module enables
monitoring and management ability for the orchestration
system.

(3) We provide a human task client API. The API
implements two functions: queries a user’s to do list and
sends a message to the engine when the users have
finished their work.

(4) The engine is the most important module. It
provides process registration and execution functions.
Fig.7 shows the steps of the process registration: firstly, a
programmer registers process class to the engine.
Secondly, Annotation Parser extracts the annotation of
each method, and then finds the corresponding annotation
processor by the annotation type from the annotation
processor registry. Thirdly, Annotation Processor reads
the attributes of the annotation, such as “name”, “post”
and etc. Then it adds this separate information to the
process definition. Fourthly, when all the annotations are
processed successfully, the engine makes a whole process
definition. Fifthly, Model Builder builds an execution
model as the runtime process controller, such as Petri-Net
based or State-Machine based model. The builder also
extracts each method from the artifact such as a Java

2009 年 第 6 期 计 算 机 系 统 应 用

 159

class. Sixthly, the newly created execution model will be
stored in a registry and indexed by the process definition
information. Simultaneously, each activity method is
stored in a registry and indexed by names.

Fig.7 Process registration steps

Compared with XML-based process registra-

tion/parsing steps, there are some benefits:
(1) Do not need to parse the verbose XML

document, which consumes lots of time and memory.
(2) Do not need to generate new Classes and

compile for each translated XML described activity and
do not need to deploy these classes and artifact into a
run-time container, such as EJB container.

(3) No heavy resource and time burden during
debugging a process due to frequent registration/parse steps.

After a process is registered in the orchestration
system, an invocation from outside may fire the run-time
engine to orchestrate the registered process. Fig.8
describes the execution steps.

Firstly, when there is an invocation from outside,
such as a soap-based web service call, the engine creates

Fig.8 Process execution steps

a flow instance for this conversation. Secondly, Activity
Scheduler finds the corresponding execution model for
each process instance. Thirdly, the corresponding
execution model in charge of the whole execution
process orchestrates the ordering of activity invocation.
Fourthly, Activity Scheduler dispatches each activity
method to Activity Executor with their name. Fifthly,
Querying for method command is issued by Activity
Executor. Engine finds it in the activity method registry.
Sixthly, Activity Executor executes the method as the
action of the activity when the corresponding method is
found out. Finally, the Activity Executor will return the
result to the Activity Scheduler, and the scheduler could
schedule the rest work until the last activity is finished.

5 Experiments and Results
To get better understanding of the pros and cons of

our approach, we conducted some experiments using
both our approach and other existing approach.

The service orchestration scenario in our experiments
is a travel booking process, which is showed in Fig.9. The
process starts when a customer enters the data for his travel
arrangements. Then the credit card information is checked
for validity. If the credit card data is incomplete or not
valid, the process ends. Otherwise, three different
reservations are made for the fight, hotel and car. And then
if all the reservations are completed successfully, a
confirmation number is generated. Finally, the
confirmation number or an error message is returned to the
customer who triggers the travel booking process.

To show the benefits of the orchestration system, we
recorded the development time using BPELJ with WID
6.0 (WepSphere Integration Developer) and ASO
(Annota- tion-based Service Orchestration) with Eclipse.

In Table 1, the total process development time cost,
it takes only a half of the time using BPELJ for using
ASO, which is 50 minutes. In the process definition
phase, we find that using ASO costs nearly 1/3 of using
BPELJ. To better understanding the time cost, we divide
the process definition phase into 3 steps: define partners,
define variables and define & link activities, as showed in
Table 2. We find that every step for using ASO is faster
than the corresponding one for BPELJ, especially for

 计 算 机 系 统 应 用 2009 年 第 6 期

 160

activities definition and linkage, which takes 36% of the
time of BPELJ.

Fig.9 Travel booking scenario

Table 1 Time cost of overall scenario development

Table 2 Time cost of process definition step

Define Process
Define
Partners

Define
Variables

Define & link
activities

Total

BPELJ 9 min. 6 min. 20 min. 58 min.

ASO 5 min. 5 min. 10 min. 19 min.

6 Conclusions

In this paper, we propose an annotation-based
service orchestration system. The proposed system can
overcome traditional orchestration issues resulted from

the separation of orchestration logic from the original

system. We explain the main elements of the annotations
and the system architecture. To verify the efficiency of
the proposed system, we design a service orchestration
scenario, and record the development time cost both with
BPELJ and ASO. In the experiment, it shows that ASO is
an effective orchestration approach that nearly saves one
half of the time compared with BPELJ. In summary, with
the new annotation-based service orchestration system,
developers are expected to develop business process
more efficiently based on their current programming
language skills.

In the future, we manage to develop an integrated
tooling to facilitate the service orchestration logic
specification. Moreover, we will try to apply the idea in
state machine related orchestration to further explore the
feasibility of the approach.

References
1 Peltz C. Web services orchestration and choreography.

Computer, 2003,36(10):46－52.
2 OASIS. Web Services Business Process Execution

Language Version 2.0.OASIS Standard, 2007:1－264.
3 W3C. Web Service Choreography Interface(WSCI) 1.0.

W3C Note 8. 2002.
4 Blow M, Goland Y, Kloppmann M. BPELJ: BPEL for

Java. BEA Systems, Inc. (“BEA”) and International
Business Machines Corporation (“IBM”). 2004:1-24.

5 Monsieur G, Snoeck M, Lemahieu W. Coordinated Web
Services Orchestration. 2007 IEEE International Confer-
ence on Web Services. 2007.

6 Leymann F, Roller D, Schmidt MT. Web services and
business process management. IBM Systems Journal,
2002,41(2):198–211.

7 Van der Aalst WMP, Barros AP, ter Hofstede AHM,
Kiepuszewski B. Advanced Workflow Patterns. Proce-
edings of the 7th International Confer- ence on Cooper-
ative Information Systems. CoopIS 2000.

8 Lawrence P. Workflow Handbook 1997, Workflow
Management Coalition. John Wiley and Sons,New
York, 1997.

Develop Process Tool
Define
Data
Type

Define
Interfa
ce

Create
Services

Define
Proces
s

Total

BPE
LJ

WID 9 min. 6 min. 20 min. 58
min.

95
min.

ASO Ecli
pse

5 min. 5 min. 10 min. 19
min.

50
min.

