基于改进元学习的深度强化学习集群调度优化
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省科技创新计划(20210222); 山西省重点研发计划(202202010101008, 202102010101011); 山西省省筹资金资助回国留学人员科研项目(2024-118)


Deep Reinforcement Learning Cluster Scheduling Optimization Based on Improved Meta-learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度强化学习(deep reinforcement learning, DRL)在计算机集群调度任务中展现出了巨大潜力. 然而, 现有的基于深度强化学习的集群调度方法缺乏足够的泛化性, 导致其无法有效应对高度动态且变化频繁的集群环境. 为了应对这一挑战, 提出了一种改进元学习优化深度强化学习集群调度方法MRLScheduler. 该方法的核心在于对元学习的两项改进: 首先, 引入了基于扩散模型的数据生成模块, 该模块在元学习的初始化阶段生成多样化的合成数据, 用于扩充和优化多任务数据集. 然后, 引入了基于扩散模型的经验回放模块, 该模块在元学习跨任务训练中利用历史任务数据生成合成经验, 用于对历史经验的重用. 最后, 将改进后的元学习集成到深度强化学习的集群调度算法中, 对处于高度动态且变化频繁的集群环境中的智能体进行策略微调, 从而改善智能体的泛化能力. 实验结果表明, MRLScheduler优于其他基线算法, 有效地提升了深度强化学习集群调度算法的泛化能力.

    Abstract:

    Deep reinforcement learning (DRL) has shown significant promise in computer cluster scheduling tasks. However, existing DRL-based cluster scheduling methods often lack sufficient generalization, hindering their effectiveness in highly dynamic and frequently changing cluster environments. To address this challenge, this study proposes an improved meta-learning optimization method for deep reinforcement learning cluster scheduling, termed MRLScheduler. The essence of this methodology lies in two improvements to meta-learning: First, a data generation module based on diffusion models generates diverse synthetic data during the initialization phase of meta-learning to expand and optimize multi-task datasets. Second, an experience replay module based on diffusion models leverages historical task data to generate synthetic experiences during cross-task training in meta-learning, enabling the reuse of historical experiences. Finally, the improved meta-learning is integrated into the deep reinforcement learning cluster scheduling algorithm to fine-tune the strategies of agents in highly dynamic and frequently changing cluster environments, thus improving their generalization ability. The experimental results indicate that MRLScheduler outperforms other baseline algorithms, effectively enhancing the generalization ability of deep reinforcement learning-based cluster scheduling algorithms.

    参考文献
    相似文献
    引证文献
引用本文

贾晗铭,王丽芳,檀龙伟,李沛聪,黄昱帆.基于改进元学习的深度强化学习集群调度优化.计算机系统应用,2026,35(1):88-101

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-09
  • 最后修改日期:2025-07-07
  • 录用日期:
  • 在线发布日期: 2025-11-26
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号