基于深度强化学习的车联网可信任务卸载
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省基础研究计划青年科学研究项目(202303021222098)


Trustworthy Task Offloading in Internet of Vehicles Based on Deep Reinforcement Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对车载边缘计算(vehicular edge computing, VEC)中路侧单元(road side unit, RSU)资源受限和高负载的难题, 以及现有的任务卸载优化方案局限于降低时延或能耗, 忽视了边缘节点所面临的安全问题, 提出一种基于信任感知和近端策略优化算法(PPO)的任务卸载方案. 首先, 构建VEC网络架构, 利用周围空闲车辆的计算资源, 将任务在本地执行或卸载至RSU、空闲服务车辆进行计算处理, 以降低系统整体时延与能耗. 其次, 构建一种基于多源赋权和奖惩机制的动态反馈信任评估模型, 实现对边缘节点可信度的量化评估. 最后, 利用基于深度强化学习的PPO算法对任务卸载策略进行优化. 实验结果表明, 相较于DQN、D3QN和TASACO算法, 所提方案具有更好的收敛性和稳定性, 而且在任务执行时延和能耗等方面优于现有方案.

    Abstract:

    In response to the challenges of resource constraints and high load in road side unit (RSU) within vehicular edge computing (VEC), as well as the limitations of existing task offloading optimization schemes that focus solely on reducing latency or energy consumption while neglecting the security issues faced by edge nodes, this study proposes a task offloading scheme based on trust awareness and the proximal policy optimization (PPO) algorithm. First, a VEC network architecture is constructed, which utilizes the computing resources of nearby idle vehicles to process tasks locally or offload them to RSU or idle service vehicles, in order to reduce the overall system latency and energy consumption. Second, a dynamic feedback trust evaluation model based on multi-source weighting and a reward-punishment mechanism is constructed to achieve a quantitative assessment of the trustworthiness of edge nodes. Finally, the task offloading strategy is optimized using the PPO algorithm based on deep reinforcement learning. Experimental results show that compared to the DQN, D3QN, and TASACO algorithms, the proposed scheme has better convergence and stability, and it outperforms existing schemes in terms of task execution latency and energy consumption.

    参考文献
    相似文献
    引证文献
引用本文

秦雪晴,石琼,师智斌,王梦丽.基于深度强化学习的车联网可信任务卸载.计算机系统应用,2026,35(2):40-52

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-29
  • 最后修改日期:2025-08-28
  • 录用日期:
  • 在线发布日期: 2025-12-26
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号