基于改进YOLO11的手腕骨折快速检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Rapid Wrist Fracture Detection Based on Improved YOLO11
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对急救场景下医学影像分析中手腕骨折检测精度不足、模型推理效率低等问题, 本文提出一种基于改进YOLO11的轻量化手腕骨折检测算法MDM-YOLO. 首先设计多尺度特征提取(multi-scale feature extraction module, MSFE)模块, 通过多个并行分支提取不同尺度的信息, 解决复杂骨折形态的多尺度表征问题; 其次, 提出混合空间局部注意力(mixed spatial and local attention, MSLA)机制, 结合局部和全局特征, 显著提升了对细微骨折的关注程度; 最后, 设计动态深度可分离卷积(dynamic depthwise separable convolution, DDSConv), 在保持检测精度的同时显著降低计算复杂度并加快推理速度, 使模型更加轻量化. 实验表明, MDM-YOLO在GRAZPEDWRI-DX数据集上的精确率达到92.6%, 召回率达到88.1%, mAP50达到95.1%, 较原始模型提升1.7%、2.5%和1.5%. 在相同的硬件环境下, 检测速度提升37%, 参数量仅为原模型的73.3%, 验证了轻量化设计的有效性. 为应急场景下的快速手腕骨折诊断提供了高效解决方案.

    Abstract:

    To address the issues of insufficient detection accuracy and low model inference efficiency in wrist fracture detection for medical image analysis in emergency scenarios, this study proposes a lightweight wrist fracture detection algorithm based on the improved YOLO11, named MDM-YOLO. First, a multi-scale feature extraction module is designed to address the multi-scale representation challenges of complex fracture shapes by extracting information at different scales through multiple parallel branches. Second, a mixed spatial local attention mechanism is proposed, which combines local and global features to significantly enhance the attention to subtle fractures. Finally, a dynamic depthwise separable convolution (DDSConv) is designed to reduce computational complexity and accelerate inference speed while maintaining detection accuracy, thus making the model more lightweight. Experiments show that MDM-YOLO achieves an precision of 92.6%, a recall rate of 88.1%, and an mAP50 of 95.1% on the GRAZPEDWRI-DX dataset, representing improvements of 1.7%, 2.5%, and 1.5%, respectively, compared with the original model. Under the same hardware conditions, the detection speed increases by 37%, and the number of parameters is only 73.3% of the original model, verifying the effectiveness of the lightweight design. This provides an efficient solution for rapid wrist fracture diagnosis in emergency scenarios.

    参考文献
    相似文献
    引证文献
引用本文

张朋涛,胡乃平.基于改进YOLO11的手腕骨折快速检测.计算机系统应用,,():1-12

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-12
  • 最后修改日期:2025-09-04
  • 录用日期:
  • 在线发布日期: 2026-01-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号