基于边云协同的ECA轻量化人脸表情识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省重大科研设施预研筹建项目(BM2021800); 青岛市关键技术攻关项目(25-1-1-gjgg-31-gx)


ECA Lightweight Facial Expression Recognition Based on Edge-cloud Collaboration
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人脸表情识别在日常生活中得到了越来越广泛的应用. 针对人脸表情识别模型参数复杂、易受背景干扰和高延迟等问题, 本文提出了一种边云协同融合高效通道注意力(efficient channel attention, ECA)机制的轻量化表情识别方法. 在云端部署通用模型并利用大规模数据集进行训练, 同时在边缘端迁移学习云端模型的浅层卷积层作为特征提取器, 提升特征提取和泛化能力, 降低过拟合风险. 在此基础上, 引入ECA机制, 使模型聚焦于人脸表情特征区域、抑制无用信息, 进一步提升识别准确性与鲁棒性; 此外, 采用深度可分离卷积, 有效减少模型参数量, 同时保证表达能力, 显著降低边缘设备的计算资源消耗. 最终, 在边缘端完成识别任务, 减少数据传输开销并提升响应速度. 实验结果表明, 该方法在CK+数据集和FER2013数据集上的准确率分别达到了98.76%和71.93%. 与传统方法相比, 在保证较高准确率的同时, 显著减少了模型参数量并降低了识别时延, 验证了该方法在边缘端表情识别任务中的准确性与高效性.

    Abstract:

    Facial expression recognition has been increasingly applied in daily life. To address issues such as complex parameters, vulnerability to background interference, and high latency in facial expression recognition models, this study proposes a lightweight expression recognition method based on edge-cloud collaboration and the efficient channel attention (ECA) mechanism. A general model is deployed in the cloud and trained on large-scale datasets. Meanwhile, the shallow convolutional layers of the cloud model are transferred to the edge as feature extractors, which enhance feature extraction, generalization, and reduce the risk of overfitting. On this basis, the ECA mechanism is introduced to enable the model to focus on facial expression feature regions and suppress irrelevant information, further improving recognition accuracy and robustness. Furthermore, using depthwise separable convolution effectively reduces model parameters while maintaining expressive power, significantly lowering computational resource consumption on edge devices. Ultimately, the recognition task is performed at the edge, reducing data transmission overhead and improving response speed. Experimental results show that the accuracy of this method on the CK+ and FER2013 datasets reaches 98.76% and 71.93%, respectively. Compared with traditional methods, while maintaining high accuracy, the number of model parameters is significantly reduced and recognition latency is decreased, verifying the accuracy, efficiency, and deployment advantages of this method for facial expression recognition tasks at the edge.

    参考文献
    相似文献
    引证文献
引用本文

李文浩,张宗帅,邹文浩,田霖.基于边云协同的ECA轻量化人脸表情识别.计算机系统应用,2026,35(2):92-102

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-26
  • 最后修改日期:2025-08-19
  • 录用日期:
  • 在线发布日期: 2025-12-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号