基于集成自编码器和伪异常生成的前列腺癌异常检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目 (62471207); 福建省自然科学基金重点项目 (2024J02029); 福建省科技创新联合资金 (2024Y9028, 2023Y9280)


Prostate Cancer Anomaly Detection Based on Ensemble Autoencoder and Pseudo-anomaly Generation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    前列腺癌是男性常见的恶性肿瘤, 其MRI图像的自动异常检测对于提升诊断效率和减轻医生负担具有重要意义. 针对现有方法依赖大量标注样本且对细微病灶检测能力有限的问题, 本文提出了一种基于集成自编码器与残差伪异常生成的无监督前列腺癌异常检测方法. 具体而言, 首先引入中心化核对齐(CKA)损失的集成自编码器, 有效抑制特征冗余并生成多样化的重建结果. 其次, 通过融合多分支自编码器残差的一致高响应区域, 在无标注情况下注入解剖约束扰动, 生成更加贴近真实病灶的伪异常样本. 再次, 提出在检测网络中引入频域对比损失, 以放大正常与异常样本在频域空间的区分能力. 最后, 采用双阶段流程, 确保训练与推理过程一致, 提升模型鲁棒性. 大量实验证明, 所提方法在公开前列腺MRI及脑部MRI数据集上均取得了优异的检测准确率和良好的跨域泛化能力. 其中, 在PICAI、PMU及BTM数据集上, 图像级AUC分别达到84.00%、89.20%和89.50%, AP值分别达到82.5%、87.00%和 88.80%, 优于现有主流方法.

    Abstract:

    Prostate cancer is a common malignant tumor among men, and the automatic anomaly detection of its MRI images is crucial for improving diagnostic efficiency and reducing doctors’ workload. To address the problem that existing methods rely on large amounts of labeled data and have limited ability to detect subtle lesions, this paper proposes an unsupervised prostate cancer anomaly detection method based on ensemble autoencoders (EAE) and residual-based pseudo-anomaly generation. Specifically, an EAE with centered kernel alignment (CKA) loss is first introduced to suppress feature redundancy and produce diverse reconstruction results. Secondly, by integrating the consensus high-response regions from the multi-branch EAE, anatomically constrained perturbations are injected in the condition of no manual labels to generate pseudo-anomaly samples that more closely resemble real lesions, all without manual labels. Furthermore, a frequency-domain contrastive loss is introduced in the detection network to enhance the ability to distinguish between normal and anomaly samples in the frequency domain space. Finally, a two-stage process is adopted to maintain consistency between training and inference, thus improving model robustness. Extensive experiments show that the proposed method yields superior detection accuracy and generalization ability on public prostate MRI and brain MRI datasets. Specifically, on datasets such as PICAI, PMU and BTM, the image-level AUC reaches 84.00%, 89.20%, and 89.50% respectively, and the AP values are 82.5%, 87.00%, and 88.80% respectively, outperforming current state-of-the-art methods.

    参考文献
    相似文献
    引证文献
引用本文

刘凌杰,唐郑熠,曾坤,林清华,许清江,李佐勇.基于集成自编码器和伪异常生成的前列腺癌异常检测.计算机系统应用,,():1-12

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-13
  • 最后修改日期:2025-09-04
  • 录用日期:
  • 在线发布日期: 2026-01-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号