MTSR: Mamba-Transformer协同增强的轻量化图像超分辨率模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

北京市科技计划(Z241100007624008); 北京印刷学院信息与通信工程一级学科博士点培育项目(21090525004); 北京印刷学院科研平台建设项目(KYCPT202509)


MTSR: Mamba-Transformer Collaboration Enhanced Lightweight Image Super-resolution Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决现有轻量化图像超分辨率模型在平衡全局感受野、局部特征提取能力与计算效率方面的不足, 并针对Mamba架构在上下文建模中存在的跨token交互能力不足问题, 提出一种名为MTSR的高效Mamba-Transformer协同网络. 首先, 构建一种混合协同架构, 通过合理配比Mamba与Transformer模块, 利用Transformer卓越的跨token交互能力弥补纯Mamba模型在上下文建模方面的缺陷, 实现了长程依赖建模与计算效率的有效平衡. 其次, 设计一种深度卷积注意力前馈网络, 用以替代传统的多层感知机. 此网络能够显著增强局部细节特征的提取能力和通道间的信息交互, 从而减少重建过程中的像素级信息损失, 从而更充分地发挥Mamba模块的性能潜力. 最后, 提出一个三重深度可分离浅层细化模块, 该模块专注于高效捕获并增强图像的浅层特征, 为后续的非线性映射提供更丰富的原始纹理信息. 在5个公开基准数据集上的大量实验结果表明, 所提MTSR模型相较于当前的轻量化SOTA模型SRFormer-light和MambaIR-light, 峰值信噪比(PSNR)分别获得了高达0.31 dB和0.38 dB的性能增益, 同时保持了Mamba高效推理速度的优势. 实验结果表明, 该方法为轻量化图像超分辨率领域提供了一种兼具高性能与高效率的有效解决方案.

    Abstract:

    This study proposes an efficient Mamba-Transformer collaborated network, termed MTSR, to address the challenges of balancing the global receptive field, local feature extraction, and computational efficiency in lightweight image super-resolution models, while tackling the insufficient cross-token interaction capability in Mamba-based context modeling. First, a hybrid synergy architecture is constructed by integrating Mamba and Transformer modules in an optimal ratio. This design leverages the Transformer’s superior cross-token interaction ability to compensate for the contextual modeling deficiencies in purely Mamba-based models. Second, a novel deep convolutional attention feed-forward network is designed to replace the traditional multi-layer perceptron. This network significantly enhances the capability for local detail extraction and effective inter-channel communication, thus reducing pixel-level information loss and amplifying the performance potential of the Mamba modules. Finally, a triple depthwise-separable shallow refinement block is introduced to efficiently capture and enhance the shallow-level features of an image, thus providing richer original texture information for subsequent nonlinear mapping. Extensive experiments on five public benchmark datasets demonstrate that the proposed MTSR model achieves peak signal-to-noise ratio (PSNR) gains of up to 0.31 and 0.38 dB over the state-of-the-art lightweight models SRFormer-light and MambaIR-light, respectively, while maintaining a highly competitive inference speed. This study validates that the proposed method provides an effective solution for the field of lightweight image super-resolution, combining both high performance and high efficiency.

    参考文献
    相似文献
    引证文献
引用本文

庞梦鑫,董智红,曹鹏,洪京平,张鸣赟. MTSR: Mamba-Transformer协同增强的轻量化图像超分辨率模型.计算机系统应用,,():1-13

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-01
  • 最后修改日期:2025-09-22
  • 录用日期:
  • 在线发布日期: 2026-01-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号