基于类内类间距离的KL散度聚类分割算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省教育厅科学研究计划 (24JK0531)


KL Divergence Clustering Segmentation Algorithm Based on Intra-class and Inter-class Distance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前基于KL散度的模糊聚类分割研究面临两个核心挑战: (1)如何有效平衡算法的抗噪性与计算效率, 以满足实时性应用需求; (2)如何避免非凸目标函数导致的局部最优问题, 提升在复杂图像上的准确性和稳定性. 针对以上问题, 本文提出了一种融合类内类间距离测度与KL散度的快速模糊聚类图像分割算法. 首先, 摒弃了仅最小化类内距离的传统思想, 通过构建类内距离最小化与类间距离最大化之差作为新目标测度, 使得类内距离尽量最小化而类间距离尽量最大化, 保证了样本点归类时能精确地找到相应的类别, 提高样本分类的准确性. 其次, 将KL散度与图像直方图相结合, 一方面利用KL散度增强对噪声和非均匀数据的鲁棒性, 另一方面借助直方图大幅减少算法迭代的计算数据量, 在提升区域一致性的同时确保了算法的高效性, 有效解决了现有方法在鲁棒性、准确性与实时性难以兼得的困境, 使得算法在医疗、智能驾驶、机器人导航等领域更适用. 通过大量不同种类图像分割测试结果证实, 本文所提出的新类内类间基于 KL 散度的模糊C均值聚类算法是有效的, 尤其分割噪声较大的大篇幅图片时分割效果较好, 既能去除噪声又能满足实时性分割要求.

    Abstract:

    The current research on KL divergence-based fuzzy clustering segmentation faces two core challenges. The first is how to effectively balance the noise tolerance and computational efficiency of the algorithms to meet the requirements for real-time performance. The second is how to avoid the local optimum caused by non-convex objective functions and improve the accuracy and stability of complex images. To this end, this study proposes a fast fuzzy clustering image segmentation algorithm that integrates intra-class and inter-class distances and KL divergence. Firstly, the classical idea of solely minimizing the intra-class distance is abandoned, and a new objective metric based on the difference of minimizing the intra-class distance and maximizing the inter-class distance is constructed, which ensures the minimization of intra-class distance and maximization of inter-class distance. Additionally, this guarantees that the sample points can accurately find its corresponding class during classification. Secondly, KL divergence is innovatively combined with histograms of images. On the one hand, KL divergence is employed to enhance the robustness for noise and non-uniform data. On the other hand, the utilization of the histograms can greatly reduce the data amount of algorithm iteration, which improves the local consistency and ensures the algorithms’ efficiency. As a result, the difficulty of existing methods in balancing “robustness”, “accuracy” and “real-time performance” is solved to make the algorithm more applicable to fields such as medicine, intelligent driving, and robot navigation. A large number of various kinds of image segmentation tests show that the proposed intra-class and inter-class KL divergence-based fuzzy C-means clustering algorithm is effective, especially for segmenting large images with big noise. The algorithm can not only remove noises but also satisfy the requirements of real-time segmentation.

    参考文献
    相似文献
    引证文献
引用本文

刘璐,吴成茂.基于类内类间距离的KL散度聚类分割算法.计算机系统应用,,():1-10

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-05
  • 最后修改日期:2025-09-16
  • 录用日期:
  • 在线发布日期: 2026-01-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号