基于层次化特征融合的输电线路外破检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省研究生科研实践创新计划(SJCX25_0518); 国家电网公司总部科技项目(5700-202318309A-1-1-ZN)


Transmission Line External Damage Detection Based on Hierarchical Feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    输电线路通道环境复杂, 各类外破隐患目标在拍摄角度、观测距离等因素影响下尺度差异显著, 进而导致模型在多样化风险目标识别中精度较低, 错检与漏检问题突出. 为解决上述问题, 提出一种基于层次化特征融合的输电线路外破检测方法. 该方法以RT-DETR模型为基础, 通过引入轻量化的C2f_MambaOut模块, 优化主干网络结构并有效降低模型参数量; 构建融合极性感知注意力与门控机制的PA_CGLU模块, 替代原有AIFI模块, 以提升查询向量对图像特征的方向感知与显著性建模能力, 增强自适应语义匹配效率; 并设计层次注意力融合块HAFB, 利用局部与全局注意力分支实现输入特征的多尺度层次化融合与增强, 提升对多类别、多尺度目标的综合识别能力. 同时, 构建了一个涵盖多种真实场景的外破类型且样本分布均衡的输电线路外破检测数据集. 基于该数据集的实验结果表明, 改进后的模型平均精度值(mAP)提升了1.5%, 参数量降低了20.7%. 实验结果验证所提方法能有效缓解目标尺度差异带来的识别挑战, 增强对多样化外破隐患的综合检测能力, 在模型效率与精度之间取得更优平衡.

    Abstract:

    The transmission line channels feature complex environments, and various hidden external damage targets exhibit significant scale differences due to factors such as shooting angles and observation distances, thereby resulting in the model’s low precision and prominent problems of false and missed detection in diversified risk target recognition. To this end, this study proposes a transmission line external damage detection method based on hierarchical feature fusion. The method is based on the RT-DETR model and introduces a lightweight C2f_MambaOut module to optimize the backbone structure and effectively reduce model parameters. Additionally, a PA_CGLU module integrating polarity-aware attention and gating mechanisms is established to replace the original AIFI module, thereby enhancing the query vectors’ directional perception of image features and salient modeling capabilities, as well as improving adaptive semantic matching efficiency. Furthermore, a hierarchical attention fusion block (HAFB) is designed to realize multi-scale hierarchical fusion and enhancement of input features by employing local and global attention branches, thus boosting the comprehensive recognition ability of multi-category and multi-scale targets. Additionally, a transmission line external damage detection dataset that covers various real-world scenarios and features a balanced distribution of samples is constructed. Experimental results on this dataset demonstrate that the improved model achieves a 1.5% increase in mean average precision (mAP) and a 20.7% reduction in the parameter count. The results demonstrate that the effectiveness of the proposed method in mitigating the challenges posed by target scale variation and enhancing the overall detection performance for diverse external damage risks, thereby achieving a better balance between model efficiency and accuracy.

    参考文献
    相似文献
    引证文献
引用本文

朱跃飞,程旭,刘庆程.基于层次化特征融合的输电线路外破检测.计算机系统应用,,():1-11

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-18
  • 最后修改日期:2025-09-09
  • 录用日期:
  • 在线发布日期: 2026-01-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号