时频双域注意力机制GAN的电磁信号降噪
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

中央引导地方科技发展资金 (YDZJSX2025B009, YDZJSX2025B010); 太原市关键核心技术攻关“揭榜挂帅”项目 (2024TYJB0129).


Electromagnetic Signal Denoising Using Time-frequency Dual-domain Attention Mechanism GAN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在电磁信息安全领域, 电磁泄漏红信号的检测受电磁噪声干扰影响严重. 传统降噪方法在处理非平稳信号和复杂噪声环境时存在局限性. 提出一种基于生成对抗网络(GAN)的降噪方法, 通过生成器与判别器的对抗学习实现高效降噪. 针对电磁信号的非平稳特性设计了时频双域注意力机制(time-frequency dual-domain attention mechanism, TF-DAM), 生成器采用基于TF-DAM改进的U-Net架构, 结合残差网络和dropout层增强泛化能力, 利用编码器-解码器结构和跳跃连接保留信号细节, 训练过程中采用动态调整损失权重的策略提高训练效率和降噪效果. 实验表明, 该方法在信噪比提升和细节保留上优于传统方法, 在非平稳信号处理中表现突出. 本研究为电磁信号降噪提供了新思路, 具有较高应用价值.

    Abstract:

    In the field of electromagnetic information security, the detection of electromagnetic leakage of red signals is severely affected by electromagnetic interference. Traditional denoising methods exhibit limitations when dealing with non-stationary signals and complex noise environments. In this study, a denoising method based on generative adversarial network (GAN) is proposed, and efficient noise reduction is achieved through adversarial learning between the generator and discriminator. To address the non-stationary characteristics of electromagnetic signals, a time-frequency dual-domain attention mechanism (TF-DAM) is designed. The generator adopts an improved U-Net architecture that incorporates TF-DAM and integrates residual networks and dropout layers to enhance generalization capability. The encoder-decoder structure and skip connections are utilized to preserve signal details. During training, a dynamic loss-weight adjustment strategy is employed to improve training efficiency and denoising performance. Experimental results demonstrate that the proposed method outperforms traditional approaches in terms of signal-to-noise ratio (SNR) improvement and detail preservation, exhibiting superior performance in nonstationary signal processing. This study provides a novel solution for electromagnetic signal denoising, demonstrating high practical application value.

    参考文献
    相似文献
    引证文献
引用本文

边杏宾,石森,胡志勇,马俊明.时频双域注意力机制GAN的电磁信号降噪.计算机系统应用,,():1-12

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-21
  • 最后修改日期:2025-09-16
  • 录用日期:
  • 在线发布日期: 2026-01-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号