基于卫星红外通道数据的闪电高密度区域识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国气象局雷电重点开放实验室开放课题 (2024KELL-B013)


Identification of High-density Lightning Area Based on Satellite Infrared Channel Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    闪电因破坏性强、致灾风险高, 其精准监测是防灾减灾的关键环节. 静止气象卫星(如葵花-8)凭借大范围、连续观测的优势, 为闪电监测提供了理想平台, 但卫星云图与闪电活动的物理关联机制尚未明确, 制约了实际应用. 本文利用葵花卫星数据和甚低频远距离闪电探测网数据, 提出AE-UNet模型, 实现基于卫星云图的闪电高密度区识别. AE-UNet模型嵌入通道注意力机制和残差连接, 自适应深层融合卫星多通道特征; 在不同尺度特征拼接过程中嵌入通道-空间双重注意力机制, 充分挖掘空间关联关系. 实验结果表明, AE-UNet的闪电识别准确率达97.91%, 命中率(POD) 达67.47%, 虚警率(FAR) 达26.92%, 较基准模型性能提升显著. 该模型能根据卫星云图提供可靠的闪电活动信息, 有力支撑防灾减灾工作.

    Abstract:

    Due to its highly destructive nature and significant disaster risk, accurate lightning monitoring is a crucial component of disaster prevention and mitigation. Geostationary meteorological satellites, such as Himawari-8, provide an ideal platform for lightning monitoring with the advantages of broad coverage and continuous observation. However, the physical correlation mechanism between satellite cloud images and lightning activity remains unclear, which restricts practical application. This study proposes the AE-UNet model, which utilizes Himawari satellite data and VLF long-range lightning detection network data, identifying high-density lightning areas from satellite cloud images. The AE-UNet model incorporates a channel attention mechanism and residual connections to adaptively and deeply fuse the multi-channel satellite features. During the concatenation of multi-scale features, a channel-space dual attention mechanism is embedded to fully explore spatial correlations. The experimental results show that the AE-UNet model achieves a lightning identification accuracy of 97.91%, a probability of detection (POD) of 67.47%, and a false alarm rate (FAR) of 26.92%, demonstrating significant performance improvement over the benchmark model. The proposed model can provide reliable lightning activity information based on satellite cloud images, thereby strongly supporting disaster prevention and mitigation efforts.

    参考文献
    相似文献
    引证文献
引用本文

张慧,宋琳,曹伟,王彪,李杰,肖萌萌,张其林.基于卫星红外通道数据的闪电高密度区域识别.计算机系统应用,,():1-10

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-31
  • 最后修改日期:2025-09-22
  • 录用日期:
  • 在线发布日期: 2026-01-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号