融合纹理特征的输变电边坡土壤轻量化分类
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目 (51979151)


Lightweight Classification for Transmission and Substation Slope Soils Incorporating Texture Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    输变电工程中边坡土壤类型的准确识别对稳定性评估与防护设计具有重要意义. 然而, 传统的野外调查与实验室分析效率低下且主观性强, 难以满足复杂工程场景的实时识别需求. 为此, 本文提出一种基于纹理融合的轻量化深度学习模型SSR-MobileNetV2-T. 该模型采用多尺度Gabor滤波、局部二值模式(local binary pattern, LBP)的双分支网络结构, 以增强对土壤微观纹理的特征提取能力. 构建了多源土壤图像数据集, 并通过HSV阈值分割与多样化数据增强扩充样本, 模拟野外复杂环境条件, 以端到端方式训练模型. 实验结果表明, 在5类边坡土壤图像分类任务中, SSR-MobileNetV2-T模型平均准确率达到98.1%, F1-score达到97.9%, 整体性能优于SVM、CNN以及EfficientNet等典型轻量化模型, 尤其在砾石和砂类别中表现突出. 参数敏感性分析和消融实验验证了各模块设计的有效性. 研究表明, SSR-MobileNetV2-T模型兼具轻量化与高精度特性, 可为输变电工程中边坡土壤的智能识别提供高效、可靠的技术支撑.

    Abstract:

    Accurate identification of slope soil types is vital for stability assessment and protective design in transmission engineering. However, conventional field surveys and laboratory analyses have low efficiency and high subjectivity, thus making them difficult to satisfy the requirements for real-time identification in complex engineering scenarios. To this end, this study proposes a lightweight deep learning model based on texture integration SSR-MobileNetV2-T, which employs a dual-branch network structure combining multi-scale Gabor filtering and local binary pattern (LBP) to enhance the ability to extract soil micro-texture. Meanwhile, a multi-source soil image dataset is constructed, and the samples are enlarged via HSV-based threshold segmentation and diverse data augmentation to simulate complex field conditions and thus train the model in an end-to-end manner. The experiments show that on a five-class slope-soil image classification task, the SSR-MobileNetV2-T model achieves an average accuracy of 98.1% and an F1-score of 97.9%, generally outperforming typical lightweight models such as SVM, CNN, and EfficientNet, with prominent performance for gravel and sandy soils in particular. Parameter sensitivity analysis and ablation experiments confirm the effectiveness of each module’s design. The study indicates that SSR-MobileNetV2-T is both lightweight and highly accurate, providing efficient and reliable technical support for the intelligent identification of slope soil in transmission projects.

    参考文献
    相似文献
    引证文献
引用本文

姜岚,安美茹,杭翠翠,王瑞红,秦士立.融合纹理特征的输变电边坡土壤轻量化分类.计算机系统应用,,():1-12

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-15
  • 最后修改日期:2025-09-26
  • 录用日期:
  • 在线发布日期: 2026-01-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号