基于相位一致性增强的相邻自相似性多模态遥感影像匹配
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金 (42501559); 湖北省自然科学基金 (2025AFB544)


Multimodal Remote Sensing Image Matching Using Phase-congruency-enhanced Adjacent Self-similarity
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于多模态图像之间存在着显著的辐射差异和几何差异, 给多模态遥感图像之间的高精度配准带来了巨大挑战. 为了解决这些问题, 本文提出了一种基于相位一致性增强的相邻自相似性多源遥感影像匹配方法——PC-ASS. 首先, 利用非线性扩散滤波构建多尺度影像表示, 在抑制噪声的同时保留共有的边缘与结构, 为后续特征检测提供基础. 随后, 基于多尺度多方向Log-Gabor滤波器计算得到相位一致性幅度图, 用以衡量影像中结构显著区域. 本文将相位一致性幅度值作为加权因子引入到相邻自相似性响应计算中, 增强了影像中的结构特征: 高相位一致性区域获得更强的响应, 从而提升了边缘与角点等稳健特征的检测数量与质量. 进一步地, 在描述符构造阶段, 本文在极坐标统计直方图框架中引入相位一致性加权机制, 对每个像素的相邻自相似性值按照其相位一致性幅值进行加权, 使结构显著区域在描述符中占据更大比例, 从而增强了特征对噪声、纹理干扰及跨模态辐射差异的鲁棒性. 最后, 通过最近邻距离比匹配策略和快速抽样一致性算法(FSC)剔除错误匹配, 实现高精度配准. 在3个公开的多模态遥感影像数据集上, 本文与PSO-SIFT、OSS、HAPCG、RIFT和ASS这5种匹配方法进行对比实验. 实验结果表明, PC-ASS 在平均正确匹配点数量、均方根误差和正确匹配率指标上均优于现有方法, 具有较强的鲁棒性和适用性.

    Abstract:

    Significant radiometric and geometric discrepancies among multimodal remote sensing images present substantial challenges for achieving high-precision registration. To address these issues, this study proposes a phase-congruency-enhanced adjacent self-similarity matching method, termed as PC-ASS, for multimodal remote sensing imagery. First, a multi-scale image representation is constructed via nonlinear diffusion filtering to suppress noise while preserving common edges and structural information, thus providing a reliable foundation for subsequent feature detection. Next, phase congruency amplitude maps are computed using multi-scale, multi-orientation Log-Gabor filters to characterize structurally salient regions in the images. The phase congruency amplitudes are then used as weighting factors in computing adjacent self-similarity responses, thus enhancing structural features: regions with higher phase congruency yield stronger responses, increasing both the number and the quality of robust features such as edges and corners. Furthermore, during descriptor construction, a phase-congruency-weighted mechanism is incorporated into the polar statistical histogram framework, weighting each pixel’s adjacent self-similarity value by its phase congruency amplitude. This ensures that structurally salient regions contribute more prominently to the descriptor, thereby improving robustness against noise, texture interference, and cross-modal radiometric differences. Finally, incorrect matches are eliminated through a nearest-neighbor distance ratio strategy combined with the fast sample consensus (FSC) algorithm, enabling high-precision registration. Comparative experiments on three publicly available multimodal remote sensing datasets against five representative methods (PSO-SIFT, OSS, HAPCG, RIFT, and ASS) demonstrate that PC-ASS outperforms existing approaches in average correct matches, mean root-mean-square error, and correct matching rate, highlighting its robustness and broad applicability.

    参考文献
    相似文献
    引证文献
引用本文

曹徐鹏,喻国荣,吴俊卿.基于相位一致性增强的相邻自相似性多模态遥感影像匹配.计算机系统应用,,():1-11

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-16
  • 最后修改日期:2025-10-10
  • 录用日期:
  • 在线发布日期: 2026-01-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号