基于拉格朗日特征融合的临近降水预报网络
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金 (U21B2049, 42205153); 2024年度广东省基础与应用基础研究基金气象联合基金 (2024A1515510019)


Precipitation Nowcasting Network Based on Lagrangian Feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着极端气候频发, 提升降水预报能力已成为气象业务中的迫切需求. 现有的大多数基于数据驱动的方法将降水的运动与强度耦合建模, 尽管能有效捕捉大尺度降水系统, 却难以准确预测中小尺度强降水的剧烈演变, 限制了其在强降水预报上的评分. 本文基于拉格朗日变换实现运动与强度的解耦, 构建了一种双分支融合网络LAFUNet, 一个分支直接分析原始雷达图像序列, 以捕捉大尺度降水的空间结构与运动特征; 另一个分支将降水场转换至拉格朗日坐标系, 专注于建模降水强度的演变, 从而更有效地表征与中小尺度强降水相关的非线性强度变化. 此外, 双分支交互模块用于自适应地融合两个分支的特征. 实验基于CIKM和SEVIR公开雷达数据集开展, 结果表明, 该模型在强降水预报上的性能突出. 尤其是在SEVIR数据集上, 针对强度阈值超过219的极端降水事件, 其未来1 h的CSI指标高达0.1368, 显著超越了VMRNN等模型.

    Abstract:

    With the increasing frequency of extreme climate events, enhancing precipitation forecasting capability has become an urgent need in meteorological operations. Most existing data-driven methods model precipitation motion and intensity in a coupled manner. Although effective at capturing large-scale precipitation systems, these methods struggle to accurately predict the rapid evolution of small- to medium-scale heavy precipitation, thereby limiting their forecast skill for intense rainfall events. In this study, a dual-branch fusion network named LAFUNet is proposed, which decouples motion and intensity via Lagrangian transformation. One branch directly analyzes original radar image sequences to capture the spatial structure and motion characteristics of large-scale precipitation systems. The other branch transforms the precipitation field into the Lagrangian coordinates, focusing on modeling intensity evolution to better represent the nonlinear intensity changes associated with small- to medium-scale heavy precipitation. Additionally, a dual-branch interaction module is designed to adaptively fuse features from both branches. Experiments are conducted on the public CIKM and SEVIR radar datasets. The results demonstrate that the proposed model achieves outstanding performance in heavy precipitation nowcasting. Particularly on the SEVIR dataset, for extreme precipitation events with an intensity threshold exceeding 219, the model attains a CSI score of 0.1368 for 1 hour forecasts, significantly outperforming comparative models such as VMRNN.

    参考文献
    相似文献
    引证文献
引用本文

蒋志凯,葛玲玲.基于拉格朗日特征融合的临近降水预报网络.计算机系统应用,,():1-10

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-22
  • 最后修改日期:2025-10-14
  • 录用日期:
  • 在线发布日期: 2026-01-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号