基于YOLO11-AM的烟垢小目标检测与在线监测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Small-object Tobacco Tar Residue Detection and Online Monitoring Based on YOLO11-AM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    卷烟加工过程对生产线上混合物料状态的感知能力, 直接影响产品质量与运行效率. 但当前监测方法主要聚焦原料属性, 难以全面揭示生产线运行状态. 为此, 提出一种以烟垢为切入点的生产线异常检测新方法, 通过引入自适应特征增强模块(adaptive feature enhancement, AFE)和多尺度卷积注意力机制(multi-scale convolutional attention mechanism, MSCAM), 提升模型在复杂背景下的小目标烟垢检测精度和实时性, 构建出高效率的烟垢检测YOLO11-AM网络. 对标准取样得到的烟草混合物料, 在正交优化后的环境参数下进行消融实验, 结果表明YOLO11-AM模型的平均精度达到97.8%. 同时, 推理速度较基础模型提升了24.6%, 达到2.16 ms/张. 进一步的工业部署显示, 模型预测烟垢质量的误差控制在±5%以内, 满足卷烟厂对在线监测系统的性能要求. 本研究为烟草行业的智能化质量控制提供了高效技术支持, 具有显著的理论和实践价值.

    Abstract:

    The perception of mixed material conditions on cigarette production lines directly affects product quality and operational efficiency. However, current monitoring methods mainly focus on raw material attributes and are difficult to comprehensively reflect production line status. To address this limitation, a novel anomaly detection method using tobacco tar residue as a key indicator is proposed. By integrating an adaptive feature enhancement (AFE) module and a multi-scale convolutional attention mechanism (MSCAM), detection precision and real-time performance for small tobacco tar residues in complex backgrounds are improved, resulting in the development of an efficient YOLO11-AM detection network. Ablation experiments conducted on standard-sampled tobacco mixtures under orthogonally optimized environmental parameters show that the proposed YOLO11-AM model achieves a mean average precision (mAP) of 97.8%, while the inference speed is improved by 24.6% compared to the baseline model, reaching 2.16 ms per image. Further industrial deployment demonstrates that the prediction error for tobacco tar residue mass is controlled within ±5%, meeting the performance requirements of online monitoring systems in cigarette factories. This study provides efficient technical support for intelligent quality control in the tobacco industry and holds significant theoretical and practical value.

    参考文献
    相似文献
    引证文献
引用本文

高春芳,韦干付,郝晋飞,陆有超.基于YOLO11-AM的烟垢小目标检测与在线监测.计算机系统应用,,():1-9

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-22
  • 最后修改日期:2025-10-14
  • 录用日期:
  • 在线发布日期: 2026-02-06
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号