基于改进扩散模型的遗址类建筑物生成
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划 (2023YFC3803903); 西安建筑科技大学前沿交叉领域培育专项 (X20230085)


Generation of Heritage Buildings Based on Improved Diffusion Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    遗址类建筑物作为历史文化的重要载体, 具有重要的研究与保护价值. 然而, 由于其数量稀少且持续消亡, 传统重建方法难以实现完整复原, 现有文生图技术虽可借助文本描述重现其外观, 但仍存在细节缺失、图像质量不高等问题. 为此, 本文提出一种基于改进扩散模型的遗址类建筑物生成方法, 通过引入门控残差机制优化信息流动、缓解梯度消失, 提升生成稳定性; 结合通道与空间双重注意力机制以增强局部细节与全局结构建模能力; 并利用VGG19作为判别网络, 提取多层次语义特征并引入感知损失以提升对关键视觉特征的建模效果. 实验结果表明, 相比同样基于扩散模型的KNN-diffusion与Simple diffusion, 本文方法FID下降了30.39%, CLIP-scoreISSSIM分别提升了1.08%、9.01%和2.35%. 本研究为高质量遗址类建筑图像生成提供了可行的技术路径, 有助于推动数字文化遗产的可持续研究与智能化保护.

    Abstract:

    As important carriers of historical and cultural heritage, heritage buildings hold significant value for research and conservation. However, their scarcity and ongoing deterioration make complete restoration through traditional methods challenging. While existing text-to-image generation techniques can reconstruct their appearance from textual descriptions, issues such as missing details and suboptimal image quality persist. To address these limitations, this study proposes a method for generating heritage buildings based on an improved diffusion model. A gated residual mechanism is introduced to optimize information flow, mitigate gradient vanishing, and enhance generation stability. A dual attention network combining channel and spatial attention is incorporated to strengthen the modeling ability of both local details and global structures. Furthermore, VGG19 is employed as a discriminant network to extract multi-level semantic features, and perceptual loss is introduced to improve the modeling effect of key visual features. Experimental results show that, compared with other diffusion-based models (KNN-diffusion and Simple diffusion), the proposed method reduces FID by 30.39% and improves CLIP-score, IS, and SSIM by 1.08%, 9.01%, and 2.35%, respectively. This study provides a feasible technical approach for generating high-quality images of heritage buildings, contributing to the sustainable research and intelligent conservation of digital cultural heritage.

    参考文献
    相似文献
    引证文献
引用本文

张旭欣,吴萌,赵怀栋,王璐.基于改进扩散模型的遗址类建筑物生成.计算机系统应用,,():1-11

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-30
  • 最后修改日期:2025-10-27
  • 录用日期:
  • 在线发布日期: 2026-02-06
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号