深度学习算法在皮肤病变区域分割中的研究进展
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目 (82174528); 山东中医药大学科学研究基金 (KYZK2024M14); 山东中医药大学研究生提质创新课题 (YJSTZCX2025071, YJSTZCX2025069)


Research Progress in Deep Learning Algorithms for Skin Lesion Segmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着计算机辅助诊断技术快速发展, 对皮肤病变筛查的效率明显提高, 但皮肤镜图像中众多干扰因素, 致使皮肤病变区域自动分割成为难题. 由于Skip-Connecting模型在小目标和模糊边界分割、Atrous-Convolution模型在大范围和多尺度病变分割的良好表现, 成为皮肤病变图像分割的两大主流方向; Transformer模型凭借其强大的全局建模能力和对长距离依赖关系的捕捉能力, 未来将与传统深度学习模型进一步耦合, 以优化分割性能. 基于此, 本文系统梳理Skip-Connecting模型与Atrous-Convolution模型在皮肤病变分割中的应用进展及其衍生网络的改进策略; 重点分析Transformer模型在该领域的应用范式及其与传统模型的耦合方法; 并对视觉状态空间模型(Mamba)、生成对抗网络、扩散模型等新兴架构的探索性研究进行分析. 最后, 针对当前临床研究中存在的局限性及分割效果不佳的问题, 提出相应的解决思路, 并对未来的研究方向进行展望.

    Abstract:

    The rapid development of computer-aided diagnosis technology has significantly improved the efficiency of skin lesion screening. However, the automatic segmentation of skin lesion remains challenging due to various interfering factors in dermoscopic images. Models based on Skip-Connecting have demonstrated strong performance in segmenting small targets and fuzzy boundaries, and those utilizing Atrous-Convolution excel in handling large-scale and multi-scale lesion segmentation, establishing these as two predominant approaches in skin lesion image segmentation. Furthermore, the Transformer model, renowned for its powerful global modeling and long-distance dependency capture capabilities, is poised for deeper integration with the traditional deep learning model to further optimize the segmentation performance. Accordingly, this review systematically outlines the application progress of the Skip-Connecting model and the Atrous-Convolution model in skin lesion segmentation and the improvement strategy of their derivative network. It focuses on analyzing the application paradigm of the Transformer model in this field and its coupling method with traditional models. Exploratory research on emerging frameworks, such as the visual state space model (Mamba), the generative confrontation network, and the diffusion model, is also examined. Finally, in light of the limitations in clinical research and the underlying causes of suboptimal segmentation effect, corresponding solutions are proposed, and future research directions are prospected.

    参考文献
    相似文献
    引证文献
引用本文

王星皓,刘静,仇大伟.深度学习算法在皮肤病变区域分割中的研究进展.计算机系统应用,,():1-16

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-22
  • 最后修改日期:2025-10-11
  • 录用日期:
  • 在线发布日期: 2026-02-06
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号