自适应多尺度特征融合的单目图像深度估计
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省交通建设科技项目(2019-2-8)


Monocular Image Depth Estimation with Adaptive Multi-scale Feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 增强出版
  • |
  • 文章评论
    摘要:

    在基于深度学习的单目图像深度估计方法中, 卷积神经网络在下采样过程中会出现图像深度信息丢失的情况, 导致物体边缘深度估计效果不佳. 提出一种多尺度特征融合的方法, 并采用自适应融合的策略, 根据特征数据动态调整不同尺度特征图的融合比例, 实现对多尺度特征信息的充分利用. 由于空洞空间金字塔池化(ASPP)在单目深度估计任务中, 会丢失图像中的像素点信息, 影响小物体的预测结果. 通过在对深层特征图使用ASPP时融合浅层特征图的丰富特征信息, 提高深度估计结果. 在NYU-DepthV2室内场景数据集的实验结果表明, 本文所提方法在物体边缘处有更准确的预测, 并且对小物体的预测有明显的提升, 均方根误差(RMSE)达到0.389, 准确率(δ <1.25)达到0.897, 验证了方法的有效性.

    Abstract:

    In the monocular image depth estimation method based on deep learning, the depth information of the image is lost during the subsampling process of the convolutional neural networks, which leads to poor depth estimation of object edges. To solve this problem, this study presents a multi-scale feature fusion method, and an adaptive fusion strategy is adopted to dynamically adjust the fusion ratio of feature maps of different scales according to feature data to make full use of multi-scale feature information. In the monocular depth estimation task using atrous spatial pyramid pooling (ASPP), the pixel information loss affects the prediction results of small objects. When using ASPP on deep feature maps, the depth estimation result is improved by fusing rich feature information of shallow feature maps. The experimental results on the NYU-DepthV2 indoor dataset show that the method proposed in this study has a more accurate prediction of object edges and significantly improves the prediction of small objects. The root mean square error (RMSE) reaches 0.389 and the accuracy (δ<1.25) reaches 0.897, which verifies the effectiveness of the method.

    参考文献
    相似文献
    引证文献
引用本文

陈国军,付云鹏,于丽香,崔涛.自适应多尺度特征融合的单目图像深度估计.计算机系统应用,,():1-8

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-18
  • 最后修改日期:2023-12-20
  • 录用日期:
  • 在线发布日期: 2024-06-05
  • 出版日期:
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号