基于随机抽样一致性的特征匹配研究进展
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖北省教育厅科学研究计划 (B2023012)


Research and Development of Feature Matching Based on Random Sample Consensus
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随机抽样一致性(RANSAC)算法是一种经典的参数估计方法, 常用于影像匹配、影像拼接、三维重建等计算机视觉任务. 算法首先通过随机抽样最小样本集生成假设, 然后基于此样本集拟合并评价模型参数, 迭代上述步骤, 直到满足迭代停止条件, 迭代过程中最优拟合模型即为输出结果. 随机抽样一致性算法在处理仅含单模型的数据集时效果显著, 但是模型拟合的速率受采样过程影响, 且模型精度受模型估计子制约. 为推进随机抽样一致性技术的发展, 本文对当前主流的随机抽样一致性算法进行了梳理、分析、介绍和总结. 以改进思路为分类标准对现有文献进行整理: 假设生成时, 通过只采样高质量点或添加几何约束等方法, 提升采样质量; 模型精化时, 聚合多模型或结合局部优化等方法调整模型参数; 假设验证时, 构建预筛选机制减少错误模型的验证, 降低计算开销. RANSAC的很多变体通过修改这些细节来提高计算速度和鲁棒性. 本文详细介绍了RANSAC及其各个变体的实现原理, 并在公共的数据集上对它们的性能进行定量与定性实验分析, 给出了它们的综合性能评价.

    Abstract:

    The random sample consensus (RANSAC) algorithm is a classical parameter estimation method widely applied in computer vision tasks such as image matching, image stitching, and 3D reconstruction. Hypotheses are first generated by randomly sampling a minimal subset of data points, followed by model fitting and parameter evaluation based on the sampled subset. These steps are iteratively repeated until the stop criterion is satisfied, with the optimal model obtained during the process being selected as the final output. RANSAC demonstrates strong performance when handling datasets containing a single model. However, its fitting speed is influenced by the sampling strategy, and its estimation accuracy is constrained by the underlying model estimator. To advance the development of RANSAC techniques, this study provides a comprehensive review, analysis, and summary of main stream RANSAC variants. The existing methods are classified based on their respective improvement strategies. During hypothesis generation, the sampling quality is enhanced by selecting high-quality points or incorporating geometric constraints. During model refinement, parameter accuracy is improved by aggregating multiple models or integrating local optimization techniques. During hypothesis verification, pre-screening mechanisms are introduced to filter out incorrect hypotheses, thus reducing computational overhead. Numerous RANSAC variants achieve increased computational efficiency and robustness through such modifications. This study details the implementation principles of RANSAC and its variants and conducts both quantitative and qualitative performance evaluations on public datasets to assess their overall effectiveness.

    参考文献
    相似文献
    引证文献
引用本文

李松原,李德祥,叶佳庆,边小勇,鲍海州,喻国荣.基于随机抽样一致性的特征匹配研究进展.计算机系统应用,2025,34(10):16-31

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-11
  • 最后修改日期:2025-03-31
  • 录用日期:
  • 在线发布日期: 2025-09-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62661041 传真: Email:csa@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号