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摘　要: 水下图像受到水介质散射、吸收等因素的影响, 导致图像严重降质, 而场景深度作为图像中的重要参数, 在
水下图像复原中起着关键性作用, 它既可以作为基于物理模型复原方法的中间参数, 又可以当作深度学习方法中的

特征处理. 首先, 本文从水下图像复原的基本原理出发, 介绍了水下成像模型. 其次, 重点分析了物理模型方法和深

度学习方法在景深估计与图像复原中的应用, 对不同方法进行分类归纳总结, 并对比不同方法的优缺点, 揭示场景

深度在退化建模与复原优化中的核心作用. 然后, 通过实验从主观和客观两个方面对几种算法进行了对比, 分析了

它们的优势与局限性. 最后, 提出展望, 为未来水下图像复原技术的发展提供了新的思路与方向.
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Review on Underwater Image Restoration Methods Based on Scene Depth Estimation
ZHANG Tian-Chi, QIN Hong-Wei
(School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China)

Abstract: Underwater images are affected by factors such as scattering and absorption in water, resulting in severe image
quality degradation. Scene depth, as an important parameter in images, plays a key role in underwater image restoration. It
can be used as an intermediate parameter in physical model-based restoration and as a feature in deep learning. Firstly,
this study introduces an underwater imaging model based on the principle of underwater image restoration. Secondly, it
focuses on analyzing the application of physical models and deep learning in scene depth estimation and image
restoration. By classifying and summarizing these different methods, the study compares their advantages and
disadvantages to reveal the core role of scene depth in degradation modeling and restoration optimization. Thirdly, several
algorithms are compared through experiments from both subjective and objective aspects to analyze their advantages and
limitations. Finally, an outlook is presented to provide new ideas and directions for the future development of underwater
image restoration.
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 1   引言

水下图像复原技术广泛应用于水下目标探测以及

自主水下航行器 (AUV)等领域[1]. 但是, 水下图像的质

量受到水体中颗粒物对光的吸收与散射、不均匀光照

等因素的严重影响[2], 导致水下图像存在图像模糊、对

比度低、颜色失真等问题[3], 如何有效地恢复水下图像

质量, 是水下图像清晰化领域的一个关键问题[4].
水下图像清晰化方法通常分为图像增强和图像复
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原两大类, 它们的最终目标都是提升图像的质量, 但是

方式和侧重点有所不同. 图像增强是通过各种技术手

段改善图像的视觉效果, 使其更加符合人眼的观感需

求, 通常不考虑图像的物理退化过程, 而是根据图像的

灰度、对比度、边缘等特征进行处理. 图像复原旨在

通过建模图像退化过程, 恢复出原始图像, 通常假设图

像退化是由已知的模糊、噪声、散射等物理过程导致

的, 通过逆向推断这些退化过程, 尽可能恢复图像的真

实信息, 这类方法可进一步细分为基于物理成像模型

和基于深度学习的图像复原方法.
图像增强方法仅进行对比度调整、亮度修正、锐

化等以提高图像视觉效果[5], 这种方法主要包括直方图

均衡化[6]、限制对比度直方图均衡化[7]、灰度世界假

设[8]以及白平衡算法[9]等. 这些基于传统图像增强算法

的方法实现简单、快速, 适用于视觉感知优化, 在一定

程度上可以改善水下图像的对比度和清晰度, 但通常

情况下效果有限, 无法恢复图像的原始物理信息, 可能

会导致信息丢失或过度增强, 仍需采用更好的方法解

决图像失真的问题.
随着计算机视觉和图像处理技术的发展, 对图像

成像过程的深入研究以及成像模型的开发, 研究者们

逐步深入探索基于物理模型的图像复原方法, 该方法

根据背景光、透射率、场景深度等反演图像退化过程

获取原始图像. 其中, 使用较多的有用于颜色纠正的

Retinex 方法[10–12]和主要用于去雾的基于暗通道先验

(DCP)算法[13,14]及其改进算法[15].
随着深度学习技术的发展, 涌现出大量基于深度

学习的水下图像复原方法. 这些方法通过数据驱动的

方式, 利用大量的训练数据来学习图像的退化过程及

恢复方法, 实现了更为精准的水下图像复原, 鲁棒性更

强[16]. 其中, 一些研究采用卷积神经网络 (CNN)模型[17–20]

直接学习退化图像到清晰图像的映射进行水下图像复

原. 另外, 还有一些研究采用生成对抗网络 (GAN) 模
型[21–23]进行水下图像复原过程学习, 生成更为真实的

水下图像. 深度学习方法能够自动学习图像退化和恢

复的规律, 避免了手动建模退化过程的繁琐, 但通常需

要较长的模型训练时间和大量的计算资源.
景深的物理含义是场景中各像素点与相机之间的

距离, 涉及图像的空间分布和物体的远近, 准确的景深

估计对于水下图像复原是必要的[24]. 近年来, 基于景深

估计的水下图像复原方法取得了显著进展, 但水下图

像景深估计仍有较大的不确定性, 尤其在复杂的水质

和光照环境下, 如何获取准确的深度图是一个难题. 本
文的目标是探讨基于场景深度的水下图像复原方法,
将着重介绍基于物理模型方法和深度学习的景深估计

和图像复原技术, 分析这些方法的优缺点, 以及在不同

条件下的表现, 并通过实验评估不同方法的性能, 最终

为水下图像复原技术的发展提供新的思路和实践依据.

 2   水下成像模型

水下成像模型是理解水下图像退化过程和设计有

效复原算法的基础, 为后续图像复原方法的设计提供

了理论依据. 本节详细介绍了水下成像过程中各关键

因素的物理机制, 尤其是背景光的影响和透射率的变

化等重要参数的作用.
Jaffe-McGlamery 成像模型广泛应用于水下图像

复原[25], 其成像原理如图 1所示.
 
 

目标

悬浮颗粒
水体

自然光

相机

场景深度d(x)直接反射分量
前向散射分量
后向散射分量

 
图 1    水下成像模型原理

 

Jaffe-McGlamery 模型表示了光线、水体、相机

与场景之间的相互作用[26], 它是基于水介质的真实模

拟, 相机接收到的总光照是物体直接反射、前向散射

和后向散射这 3个分量的线性叠加, 可以表示为:

Ic(x) = Ec
d +Ec

f +Ec
b, c ∈ {R,G,B} (1)

Ed E f

Eb

其中,  表示直接反射分量,  表示前向散射分量,
表示后向散射分量, 反射分量可表示为:

Ec
d = Jc(x)tc(x), c ∈ {R,G,B} (2)

J(x) t(x)其中,  表示未退化的清晰图像,  表示透射率, 后
向散射是由水体中悬浮颗粒的散射造成的[27], 可表示为:

Ec
b = Bc (1− tc(x)

)
, c ∈ {R,G,B} (3)

Bc其中,  表示背景光.
背景光的物理内涵是无限远背景处最亮点的光强[28].

当相机与水下场景间的距离不远时, 前向散射可以忽

略不计, 只需考虑其他两个分量的影响, 因此, 简化的

计 算 机 系 统 应 用 http://www.c-s-a.org.cn 2025 年 第 34 卷 第 12 期

2 专论•综述 Special Issue

http://www.c-s-a.org.cn
http://www.c-s-a.org.cn
http://www.c-s-a.org.cn
http://www.c-s-a.org.cn
http://www.c-s-a.org.cn


成像模型 (IFM)可表示为:

Ic(x) = Jc(x)tc(x)+Bc (1− tc(x)
)

(4)

根据简化的成像模型, 利用透射率和背景光反演退

化图像的形成过程, 即可得到未退化的清晰图像, 求解

过程中通常会为透射率设置一个最小阈值, 防止部分区

域透射率为零的情况出现, 最终的复原图像可表示为:

Jc(x) =
Ic(x)−Bc

max[t0, tc(x)]
+Bc (5)

t0 t(x)其中,  表示透射率的最小阈值, 透射率 是光衰减

系数和景深的非线性组合.

tc(x) = Nrerd(x)(λ) = e−β
c(λ)d(x) (6)

β(λ) d(x) Nrer(λ)

λ

其中,  表示光衰减系数,  表示场景深度, 
表示归一化剩余能量比, 其含义为波长为 的光传播单

位距离所剩能量与初始能量之比[29].
透射率和背景光是水下图像复原中的重要参数[30],

准确的背景光和透射率能够得到质量更好的原始图像,
而景深又与透射率和背景光息息相关, 因此, 对基于景

深的水下图像复原方法进行系统性的总结是非常有必

要的.

 3   基于景深估计的水下图像复原方法

根据使用的方法和原理的不同, 本节将基于景深

估计的水下图像复原方法分为了物理模型方法和深

度学习方法两个大类, 并对典型的方法进行归纳, 分析

其优缺点.
 3.1   基于物理模型方法

基于物理模型的景深估计方法主要是基于暗通

道、颜色通道差异等先验知识, 或是图像的模糊度、

亮度、饱和度等视觉感知特征与景深的关系, 对水下

图像的退化过程建模, 反演图像的退化过程获取清晰

图像.
 3.1.1    基于单一先验或特征

单一的先验或特征是指仅使用如暗通道等先验或

模糊度、亮度、饱和度等特征中的一种来获取景深并

复原水下图像. 这些特征的选择根本依据在于它们直

接或可测量地反映了水下光学成像的物理退化过程,
并表现出显著的统计相关性, 且能够由水下光学成像

的物理定律得到合理解释. 水下红色通道光衰减最快,
蓝绿通道衰减较慢, 导致颜色通道差值或比值随景深

增加而显著增大; 前向散射使物体反射的光线在到达

相机前发生扩散, 导致图像模糊, 使得景深大的位置比

近处的更模糊; 由于光衰减规律, 随着景深的增加, 物
体反射光的强度显著减弱.

2010年, Carlevaris-Bianco等人[31]使用最大强度先

验 (MIP), 通过图像 RGB 3 个颜色通道之间的强烈衰

减差异, 即红色通道的最大强度与绿色和蓝色通道的

最大强度之差来估计场景深度, 并利用这些深度信息,
将真实场景的亮度建模为马尔可夫随机场 (MRF)[32],
从模糊图像中恢复场景亮度, 该算法可以对不同类型

的水下图像进行去雾处理. 该方法不需要任何专门的

硬件或场景的先验知识, 但是难以确定大型彩色物体

的景深.

d(x) = max
y∈Ω(x)

IR(y)− max
y∈Ω(x)

{
IG(y), IB(y)

}
(7)

d(x) Ic(y),c ∈ {R,G,B}
Ω(x) x

其中,  表示深度图,  表示退化图像,
表示像素点 的一个邻域.
经典图像去雾算法暗通道先验由 He 等人[33]提出,

DCP 方法假设在 RGB 三通道中至少有一个颜色通道

的某个小区域某些像素具有很低的值, DCP 在陆上图

像复原取得了很好的效果, 尤其是对图像去雾效果显

著. 在此基础上的水下暗通道先验 (UDCP)[34], 最初

仅在蓝绿通道上实现 DCP, 由于忽略了红色通道的影

响, 导致对红通道值较大的图像处理效果较差, 针对其

不足引入红通道做了如颜色通道衰减差异等的各种改

进[35]. 2015 年, Peng 等人[36]观察到水下图像距离相机

越远的物体越模糊, 首次提出了基于场景模糊度方法

来估计场景点与相机之间的距离, 从而恢复水下图像.

P(x) =
1
n

n∑
i=1

(∣∣∣Ig(x)−Gri,ri (x)
∣∣∣) (8)

P(x) Ig n = 4 ri =

2in+1 Gk,σ σ k× k

其中 ,   表示模糊度 ,   表示灰度图像 ,   ,  
,  表示标准差为 的 高斯滤波[37]. 对模

糊度图使用最大滤波器、形态学[38]重建填补坑洞和引

导滤波[39]平滑处理即可得到深度图. 与其他基于 IFM
的复原方法相比, 该方法在不同光照条件下可以更好

地复原水下图像, 证明了基于模糊度的景深估计适用

于各种图像. 2017年, Wang等人[40]提出了一种最大衰

减识别方法 (MAI), 使用红色通道获取深度图, 将整个

图像分割成小块, 估计每个小块的背景光, 并通过线性

插值的方式获取全局背景光, 该方法在对比度增强和

色彩校正方面取得了良好的效果, 但是当图像太暗时,
会导致处理结果失真. 2021 年, Zhou 等人[41]提出一种
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最小重投影损失策略, 并采用多尺度估计策略减少深

度图中的伪影, 在获取深度图后, 重新估计了深度估计

错误的背景区域, 以减小估计反向散射时由于低对比

度和色偏导致的部分背景区域被误认为近景引起的误

差, 最后使用引导滤波平滑和增强深度图的细节, 尽管

与以往方法相比能够获得更高质量的水下图像, 但成

像范围估计方法的准确性仍存在反向散射被高估或低

估的局限性. 2023年, 邱啟蒙等人[42]通过明暗通道差值

获取景深, 选取深度图中前 0.1%像素点用于求取背景

光, 为后续图像复原打好基础.

d(x) = Fs (Ib(x)− Id(x)) (9)

Fs Ib(x) Id(x)其中,  为归一化函数,  和 分别表示明暗通

道, 其表达式为:
Ib(x) = max

y∈Ω(x)

(
max

c∈{R,G,B}
Ic(y)

)
Id(x) = min

y∈Ω(x)

(
min

c∈{R,G,B}
Ic(y)

) (10)

Ic(y) Ω(x) x其中,  表示退化图像,  表示像素点 的某邻域

局部区域, 该方法模型求解前的红通道补偿预处理提

高了参数估计的准确性, 却增加了算法的运行时间. 由
于在深海区域人工光照是唯一光源, 使得图像前景区

域白光强度高, 导致图像局部饱和度降低, 而随着距离

的增加, 光照逐渐减弱, 对应区域的饱和度逐渐增大.
2023 年, Zhang 等人[43]利用图像饱和度与距离之间的

关系来估计水下图像的景深, 获取的场景中最近点与

最远点之间的相对距离为:

d(x) = 1− 3min{R(x),G(x),B(x)}
R(x)+G(x)+B(x)

(11)

R(x)、G(x)、B(x) x其中,  分别为像素点 处 RGB三通道

对应点的强度值, 该研究用于 AUV自主运行中的水下

图像恢复, 但是由于算法的复杂度, 与 AUV 的实时性

要求还存在一定差距.
综上所述, 相对其他类型而言基于单一先验或特

征的方法复原效率更高, 但是图像的复原效果一般有

限, 具有一定局限性, 若复原水域不满足算法所提先验,
复原效果会非常差, 甚至会加剧降质. 模糊度、饱和度

等方法更适用于有明显远近差异的图像, 对于内容单

一的图像不太适用. 就效率而言此类方法更适合于 AUV
作业等实时任务, 但是复原质量有待提高.
 3.1.2    基于多个先验或特征融合

在实际应用中, 单一的特征可能无法满足复杂多

变的水下环境, 因此近年来研究者们更多地将多个特

征进行加权融合, 获取不同的深度图, 设计各自的权重,
以自适应变化的环境因素, 或是使用多个特征建立线

性模型估计景深.
2017年, 针对之前模糊度方法的不足, Peng等人[44]

构建了一种基于图像模糊度和光吸收的水下场景深度

估计方法 (IBLA), 结合红通道先验、最大强度先验和

场景模糊度这 3 种方法进行深度估计, 并通过引导滤

波对深度图进行细化和平滑处理, 获取的归一化相对

距离需要转换为实际距离:

d(x) = D× (dn(x)+d0) (12)

d(x) dn(x) D

d0

B

其中,  表示实际距离,  表示相对距离,  为转换

系数, 由大量的实验确定, 一般取为 8或 9,  是场景中

最近点到相机的距离, 对于 AUV可以通过自身配备的

多普勒速度计程仪 (DVL) 来获取, 其他场景可以根据

背景光 计算:

d0 = 1− max
x,c∈{R,G,B}

|Bc− Ic(x)|
max

(
Bk,1−Bk) (13)

k = argmax
c∈{R,G,B}

(maxx |Bc− Ic(x)|)其中,  .

2018年, Peng等人[45]基于深度相关的颜色变化对

DCP进行推广, 分析了 RGB 3个颜色通道是否随景深

的变化而具有更大或更小的值, 首先使用梯度图粗略

地估计深度图, 然后使用线性回归获取 RGB强度值与

景深之间的相关性, 该方法泛化能力强, 可同时应用于

水下、夜间、雾霾和沙尘暴图像的复原. Song 等人[46]

提出了一种基于水下光衰减先验 (ULAP) 的水下图像

场景深度估计模型, 通过对大量图像的蓝绿通道最大

强度 (MVGB)、红通道强度 (VR) 以及它们的差值与

景深进行相关性分析, 如图 2所示, 发现景深与MVGB
成正比, 与 VR 成反比, 说明了根据颜色通道差异建立

线性模型的可行性, 根据所得结论建立了线性景深模

型 (SDM):

d(x) = µ1m(x)+µ2v(x)+µ0 (14)

µi (i = 0,1,2) m(x)

v(x)

其中,  为线性相关系数,  表示 MVGB,
表示 VR.
2019年, Deng等人[47]充分考虑光照不足的环境和

光照充足的情况, 根据各颜色通道的强度值将图像自

动进行分类, 对弱光图像和背景光较暗而前景较亮的

图像, 使用最小逆红通道衰减估计景深, 其他情况则使

用MIP, 对于人工光照接近目标时, 该方法会产生光晕
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效应. 2020年, 邓翔宇等人[48]基于红色通道和场景模糊

度估计景深, 并利用景深将图像前景和背景分离, 以获

取更精确的背景光, 该方法有效避免了前景中存在的

较亮像素或白色物体被错误的估计为背景光. Song
等人[49]融合了MIP、红通道先验和场景模糊度进行景

深估计. 与 ULAP类似, 2021年, 郭威等人[50]分析了在

深海中传统复原方法失效的原因, 并对大量的深海图

像的景深进行相关性分析, 统计图像中近、中和远景

的相关指标, 分析了海水对光的吸收、图像饱和度以

及亮度与景深的关系, 结合 3 种特征建立线性景深模

型 (SDM):

d(x) = µ1S (x)+µ2V(x)+µ3M(x)+µ0 (15)

µi (i=0,1,2,3) S (x) V(x) M(x)其中,  为线性相关系数,  、 、

分别表示图像饱和度、亮度和红色与最大蓝绿色通道

差值.
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图 2    MVGB、VR与景深的相关性分析

 

2022 年, Liu 等人[51]利用明暗通道差值估计景深,
同时结合红绿蓝通道的差异和红通道先验进行加权融

合, 并利用模糊度、平滑度和最大强度先验求取背景

光, 该方法能够去除人工光源对水下图像的影响, 得到

色彩高保真的复原图像. 类似的加权融合, 李靖怡等

人[52]的方法为基于梯度信息和色差求取深度图. 2023
年, Zhou 等人[53]结合了红通道先验和最大强度先验获

取深度图, 并通过自适应暗像素消除反向散射. Zhu 等

人[54]提出了一种基于光衰减的深度图融合模型, 该方

法将 ULAP 与 MIP 进行融合以更准确地估计场景的

透射图用于图像恢复, 并结合四叉树分解定位法[55]估

计背景光, 该方法在提高对比度的同时, 有效地增强了

水下图像的细节和色彩, 但是当图像的背景颜色接近

纯绿色或纯蓝色时, 最终的复原效果不佳. 2024 年, Li
等人[56]直接引用了 ULAP 方法计算深度图, 然后结合

提出的适应了与不同水况相关的衰减系数估计透射率.
李月梅等人[57]将 RGB空间转换到 HSL空间[58]获取图

像亮度信息, 使用最小值滤波器处理亮度信息进行深

度估计, 考虑光衰减和雾化特性, 融合了MIP和梯度信

息获取的深度图以得到更准确的景深.
综上所述, 此类方法有如 IBLA 一样通过多个先

验自适应加权融合, 还有如 ULAP 一样建立多个特征

的线性景深模型, 能够更好地适应复杂多变的水下环

境. 此类方法由于需要处理多个特征或求取多个深度

图, 相对而言需要更多的时间来实现准确的深度估计,
对于一些如 AUV 一样对实时性较高的应用不太适用,
尽管其计算复杂度较高, 但其对海底地质勘探等精度

优先于处理速度的高精度离线任务仍具有不可替代性.
 3.2   基于深度学习方法

 3.2.1    基于卷积神经网络

CNN 通过卷积层能够有效提取如纹理、边缘等

特征, 并自动学习图像的空间特征, 较强的学习能力[59]

让其在图像分类[60]、目标检测[61]等领域表现出色. 在
基于景深估计的水下图像复原领域, 基于 CNN的方法

既可以通过提取图像中与景深相关的特征, 获取深度

图, 再通过成像模型计算透射率与背景光对图像进行

复原, 也可以将深度估计网络获取到的深度图作为特

征输入另一网络模型引导图像复原, 基本流程如图 3
所示.

2018 年, Cao 等人[62]使用两种神经网络来估计背

景光和场景深度, 景深估计网络采用两个 CNN堆叠成

的多尺度架构, 包括一个含有 5 个卷积层以及两个全

连接层[63]的粗糙全局网络和一个含有 3个卷积层的精

细网络. 2019 年, Yang 等人[64]使用全卷积残差网络

(FCRN)[65]估计景深以确定背景光, 该网络建立在 Res-
Net-50架构上, 使用小卷积代替原始的全连接层实现上

采样, 减少了模型的参数, 大幅缩短了模型的训练时间.
2020 年, Marques 等人[66]通过合成包含图像和深度图

的成对数据集, 训练深度 CNN 进行景深预测, 使用了
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编码器-解码器架构并进行跳层连接, 由于没有发现对

单尺度方法的改进, 并没有进行多尺度深度预测, 因为

该方法没有使用任何自然水域图像作为训练样本, 所
以在实际预测时会产生很多噪声点. Pérez等人[67]从新

的角度出发, 利用可能为场景深度提供特征信息的水

下雾霾, 使用 CNN 来粗略估计深度图, 网络使用 5 层

卷积和池化, 第 1层通过 5×5池化减小图像大小, 其他

层保持大小不变, 在最后一个卷积层之后, 执行双线性

放大以恢复图像的原始大小, 并将此结果输入到引导

滤波器, 最后将深度图用于图像去雾, 以增强图像并

恢复原始颜色. 2022 年, Mousavi 等人[68]使用 Open-
Waters 工具包生成的合成水下图像训练深度 CNN,
从图像中提取结构和纹理特征, 以提升景深估计的准

确性. Alenezi 等人[69]使用绝对平均强度函数, 以及基

于绿色和红色、绿色和蓝色以及红色和蓝色通道像素

方差, 提出了一种基于全局和局部块像素差的景深估

计方法, 通过在 CNN 中引入块贪婪算法, 用于标准化

不同颜色通道的衰减比并选择方差最低的区域, 该方

法根据颜色通道之间的像素差异估计场景深度, 帮助

去除最终去雾水下图像的场景伪影. 2023年, 针对与场

景深度相关的衰减和散射问题, Chen 等人[70]利用位置

注意力和多扩张卷积深度感知单元, 建立了水下相对

场景深度估计网络 (URSDEN), 将与场景深度相关的

适当注意力权重自适应地分配给水下图像的每个区域,
结合 RGB、HSV和 Lab颜色空间[71], 构建多色空间特

征表征网络, 以缓解域偏移问题, 同时设计了水下场景

语义分割网络, 从而减少伪影并在图像复原中保持前

景的完整性. 2024年, 王宁等人[72]构建了名为 UIRENet
的景深估计和水下图像复原网络, 基于 CNN 构建了

景深估计模块, 使用 4 个卷积层构建深度感知网络获

取深度图, 并将其作为先验知识输入后续的图像复原

网络中的编码器部分, 该模型能够在恢复图像质量的

同时实现色彩校正.
综上所述, 基于 CNN的方法通过其强大的特征提

取与端到端学习能力, 已成为景深估计与退化校正的

核心技术. 早期研究者们聚焦多尺度堆叠网络与轻量

化架构设计, 但由于依赖合成数据且未充分耦合物理

模型, 易受真实场景噪声干扰. 近年来, 通过引入注意

力机制、多色空间特征融合、语义分割约束等, 显著

提升了深度估计的鲁棒性与复原图像的质量. 现有方

法仍面临合成数据域偏移、景深误差引发的伪影及物

理可解释性不足等挑战. 基于 CNN的方法适用于高帧

率应用场景, 如实时障碍物距离感知实现 AUV自主避

障以及水下目标跟踪等.
 
 

原始图像 景深估计网络

色彩校正网络
图像复原网络

物理模型

复原图像深度图

 
图 3    基于 CNN的景深估计与图像复原流程图

 

 3.2.2    基于生成对抗网络

GAN由生成器-判别器组成, 生成器生成以假乱真

的数据, 判别器区分生成数据与真实数据[73]. 通过对

GAN 的训练, 可以生成深度图通过水下成像模型反演

复原图像, 也可以通过其他网络结合景深信息生成复

原图像, 提升图像的质量, 基本流程如图 4所示.
 
 

景深
估计

图像
复原

原始图像 生成器 深度图

判别器

生成器

物理模型

判别器

生成水下图像

复原图像

 
图 4    基于 GAN的景深估计与图像复原流程图

 

2018年, Li等人[74]构建的WaterGAN从陆地图像

和深度图配对生成逼真的水下图像数据, 用于两阶段

网络的输入以完成水下图像的色彩校正, 其网络结构

由景深估计和色彩恢复两个阶段组成, 景深估计网络

采用全卷积编码器-解码器结构, 以下采样水下图像为

输入, 输出相对深度图, 再通过上采样恢复图像原始尺

寸与原始图像一起作为色彩恢复网络的输入. 2019年,

Gupta 等人[75]基于循环一致对抗网络 (CycleGAN)[76],
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提出了一个无监督深度网络 UW-Net, 提取图像中雾浓

度等特征, 用于从单幅水下图像间接学习估计深度图,
网络包含基于循环连接的密集块的自动编码器, 该编

码器使用结构和梯度稀疏损失来学习水下和水上模糊

彩色图像和深度图之间的映射.

2020 年, Rahadianti 等人[77]将模糊图像中的散射

效应当作噪声处理, 使用一个两阶段深度网络学习单

个模糊图像与其深度图之间的关系, 将 U-Net[78]预训练

为 GAN 框架中的生成器, 利用 GAN 的特性生成视觉

上清晰的深度图, 将 U-Net 的训练权重初始化一个新

的 U-Net, 再次训练新的 U-Net 进一步估计景深, 最小

化估计误差以获得最佳的深度图. 2021年, Zhao等人[79]

通过改进残差网络 (ResNet), 构建了一种新的复合骨

干网络, 该网络设计了具有 3 个生成器和两个判别器

的 GAN 来估计水下深度图. Hambarde 等人[80]介绍了

一种端到端的水下生成对抗网络 (UW-GAN), 他们先

使用一个粗略级生成网络估计粗略的深度图, 再将粗

略深度图和输入图像一并输入精细网络计算精细深度

图, 然后用于水下单幅图像增强. 2023 年, Yan 等人[81]

针对以往 GAN 方法恢复图像的色彩校正效果差的问

题, 提出了一种数据和物理驱动的无监督架构, 从未配

对的水下和陆地图像中执行水下图像恢复, 模型构建

了具有 2 个下采样层和 6 个残差块的深度子网络, 用

于深度特征提取. 2025 年, González-Sabbagh 等人[82]

专门为图像脱水、复原和景深估计构建了 Scene-cGAN,

由 3 个基于 U-Net 的生成器和一个基于 Transformer

的判别器组成, 3个生成器分别用于获取脱水图像、复

原图像和深度图像, 并使用了基于单向循环一致性的

多项损失函数和一个新颖的数据集来训练模型.
综上所述, 基于 GAN 的方法在水下图像复原中

通过对抗训练机制, 在深度图生成与时间质量提示展

示出显著潜力. 两阶段网络能够分别实现深度图估计

与色彩校正, 但依赖成对数据且复原效果受限于合成

数据域偏移. 随着无监督学习的发展, 通过循环一致

性损失消除对成对数据的依赖, 近年来, 通过分阶段

细化深度图提升复原精度, 物理-数据协同驱动和多任

务联合优化, 结合 Transformer增强判别器的全局感知

能力, 显著改善了色彩校正与伪影抑制效果. 然而, 现
有方法仍面临模型复杂度高、训练不稳定及真实场

景泛化性不足的挑战. 基于 GAN 的框架能够通过域

适应技术解决训练-测试环境差异问题, 适用于跨海域

科考任务.
 3.2.3    基于其他学习的方法

除了 CNN 和 GAN 之外, 还有一些研究者使用如

Transformer[83]、扩散模型[84]等方法, 这些方法或是与

物理模型结合, 或是将深度图作为先验知识用于训练

图像复原网络, 其流程与 CNN和 GAN类似. 与通常以

端到端学习退化映射的基于 CNN和 GAN不同, Trans-
former 能够显式嵌入 UDCP 透视图作为注意力先验,
扩散模型联合采样 RGBD 物理先验, 实现物理规律与

数据驱动的深度耦合, 无监督与自监督更是突破 CNN
和 GAN对配对数据的依赖. 与依赖人工标注的监督学

习方法不同, 无监督与自监督学习均属无标注学习范

式, 能够利用图像自身属性构建优化目标, 如通过物理

约束、时空一致性或跨域先验规避深度真值需求.
2019年, Skinner等人[85]提出了一种无监督模块化

两阶段深度神经网络 (DNN), 分别进行视差估计和色

彩校正, 该方法第 1 阶段通过视差估计网络估计每张

图像的视差图, 第 2 阶段使用立体相机校准将差异转

换成深度图, 然后与原始图像一并输入色彩校正模块

进行颜色校正. 2020年, Yin等人[86]研究了散射环境中

3D 距离门控成像的系统改进, 使用贝叶斯网络, 通过

高斯马尔可夫随机场结合空间约束, 提出了一种新的

三维重构算法用于解决散射效应, 该模型同时考虑了

场景深度和反射率, 从而提供了信息更丰富、更准确

的复原结果. 由于缺乏有效的水下训练数据, 且对合成

数据训练的模型在真实水下图像泛化能力较弱, Ye 等
人[87]从风格和特征自适应的角度考虑了该问题, 提出

一种风格自适应网络 (SAN) 学习风格变换, 使陆地图

像适应水下图像的风格, 再建立一个任务网络 (TN), 通
过学习域不变表示来联合估计场景深度和校正单个水

下图像的颜色. 2024年, Wang等人[88]设计一种基于物

理引导 Transformer 的方法, 由浅层特征提取、编码、

解码和回归阶段组成, 考虑到水下图像的颜色偏差和

提取更丰富的初级特征, 使用自注意力机制与 UDCP
的透射图进行交互, 构建了一个用于丰富和提取深度

的 Transformer 模块, 使用融合 Transformer 和透射图

的交互编解码器, 解决水下图像的非均匀退化的问题,
以更好地恢复特征并减少信息丢失, 最后在回归阶段

获取场景深度图. 受到自监督深度估计网络 DepthNet[89]

从水下视频序列中提取深度信息的启发, Varghese 等
人[90]通过将形成水下图像的物理模型与水下视频中相
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邻帧上的视图合成约束相结合, 提出了一个用于同时

恢复图像和景深估计的自监督深度学习网络 (USe-ReDI-
Net), 该方法能同时实时地输出深度图和清晰图像. 针
对水下场景中数据规模较小和运动复杂性带来的挑战,
Wang 等人[91]设计了自监督复合网络模型 (UWdepth),
并进一步引入深度一致性损失, 以实现更准确的帧间

运动预测和深度估计, UWdepth 由迭代姿态网络、特

征提取器、位姿估计和深度估计网络组成, 将 3 个连

续的图像帧作为网络的输入, 然后将获取的特征图输

入深度估计网络, 输出与目标帧相对应的深度图, 用作

水下成像模型的参数, 获得未退化的图像, 以构成了一

个完整的水下深度估计和图像复原系统. 2025年, Nathan
等人[92]使用扩散模型 (Osmosis), 对颜色和景深进行建

模并联合采样训练 RGBD 先验, 将陆上图像的 RGBD
先验与水下成像模型相结合, 形成扩散引导方法, 生成

复原的水下图像作为后验样本. 该方法没有对任何水

下图像进行训练, 因此不会对任何水下图像过度拟合,

但是其模型的运行时间较长.
综上所述, 基于 Transformer、扩散模型等新兴方

法的水下图像复原技术逐步突破传统 CNN、GAN 框

架的局限性. 当前存在的挑战集中于物理-数据协同机

制不完善、扩散模型实时性不足等计算开销问题及风

格迁移残留伪影的跨域优化瓶颈. Transformer 等新兴

技术在高精度三维重建中展现潜力, 如水下 SLAM
利用多帧间景深关联优化实现位姿估计与 3D重建, 但
目前计算成本仍有待优化, 未来研究需探索物理模型

与深度学习融合的轻量化方案, 兼顾效率与鲁棒性.
 3.3   各种复原方法特点对比

在上述对基于景深估计的水下图像复原方法分析

的基础上, 结合各原始文献中的结论和实验结果, 本节

从每类方法中选取几个代表性的方法进行对比归纳总

结, 主要包括: 方法类型、相关文献和发表年份、使用

的核心思想方法以及各自的优缺点, 详细信息如表 1
所示.

 
 

表 1    基于景深估计的水下图像复原方法分类对比
 

方法类型 文献 年份 核心思想方法 优缺点

基于物理

模型方法

单一先验或

特征

[31] 2010
通过红通道最大强度与蓝绿通道最大强度之差估计景深, 利用景

深建立MRF恢复图像亮度
优点: 计算复杂度低; 在符合指定

条件的情况下有较好效果

缺点: 鲁棒性不强, 局限性大, 复
杂的场景中复原效果有限

[36] 2016 根据图像模糊度与景深的关系, 基于场景模糊度估计景深

[42] 2023
基于明通道与暗通道的差获取景深, 并选取前0.1%的像素点结合

四叉树方法获取背景光

[43] 2023
利用深海人工光源图像饱和度与景深的关系, 基于局部饱和度估

计景深

多个先验或

特征融合

[44] 2017 加权融合MIP、红通道先验和场景模糊度3种方法

优点: 鲁棒性更强, 能适应不同的

环境变量

缺点: 多个特征融合导致处理时

间更长

[46] 2018 使用蓝绿通道最大强度和红通道强度建立线性景深模型

[54] 2023
将ULAP线性景深模型与MIP加权融合估计景深, 结合四叉树分

解定位法估计背景光

[57] 2024
将RGB空间转换到HSL空间获取亮度信息, 再与MIP及梯度图融

合估计景深

基于深度

学习方法

CNN

[62] 2018 使用两种网络分别估计背景光和景深

优点: 能自动提取特征, 适应性强

缺点: 训练和推理过程时间长, 且
对数据质量要求较高, 模型的可

解释性差

[64] 2019
使用小卷积代替全连接, 在ResNet-50的基础上, 建立全卷积残差

网络估计景深

[69] 2021
在CNN中引入块贪婪算法, 根据不同颜色通道间像素方差估计景

深

[72] 2024
将CNN获取的深度图作为先验知识, 用于图像复原网络的编码器

输入

GAN

[75] 2019 改进CycleGAN, 根据图像中的雾浓度等特征间接估计景深 优点: 能够有效地恢复因模糊或

光照不足造成的图像细节损失

缺点: 训练过程不稳定, 需要大量

的计算资源

[77] 2020 将散射效应当作噪声, U-Net作为生成器估计景深

[80] 2021 两个阶段分别获取粗略深度图和精细化

[82] 2025 将U-Net和Transformer作为生成器和判别器

其他

[85] 2019 使用两阶段DNN分别进行深度估计和色彩校正 优点: 灵活性高, 自适应能力强,
能够处理复杂的环境和光照条件

缺点: 复杂的结构, 需要大量的计

算资源

[90] 2023 结合物理模型和水下视频相邻帧估计景深和复原图像

[88] 2024 结合UDCP和Transformer估计景深

[92] 2025 结合扩散模型和水下成像模型估计景深
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从算法的实际应用角度考虑, 水下图像复原算法

的选择需要综合考虑实时性、复原质量和计算资源.
物理模型方法计算效率高更适用于有实时性要求的场

景, 就目前而言, 若是有非常高的实时性要求且没有严

格的复原质量要求, 可选用单一特征方法; 若同时需要

较好的复原质量, 采用多个特征的方法或轻量级深度

学习模型更合适. 对于非实时高精度场景, 基于深度学

习的方法能提供更好的复原效果, 但模型训练需要大

量的计算资源, 且现有大多模型泛化性不足, 在训练集

外的复杂水下环境中性能可能显著下降.

 4   水下图像质量评价指标

图像质量评价指标 (IQA)[93]是评价图像质量、清

晰度以及复原效果的计算模型, 现有方法主要分为主

观和客观两种形式, 主观评价是通过人眼视觉观察图

像的质量. 客观评价根据有无参考图像分为全参考、

部分参考和无参考质量评价, 下面主要介绍用于本文

的全参考和无参考指标.
 4.1   水下图像全参考质量评价

结构相似性指数 (SSIM) 是衡量两幅图像在亮

度、对比度和结构方面的相似性[94], 对于去除模糊、

恢复细节的图像复原任务来说, SSIM 能够反映复原效

果的优劣, 越接近 1说明越相似.

SSIM(x,y) =

(
2µxµy+C1

) (
2δxy+C2

)(
µ2

x +µ
2
y +C1

) (
δ2x +δ

2
y +C2

) (16)

µx µy x y δ2

δxy C1 C2

其中 ,   和 表示两图像 和 的均值 ,   表示方差 ,
表示两图像的协方差,  和 为常数.

峰值信噪比 (PSNR) 用于评估图像中的噪声和失

真[94], PSNR 值越大表示图像的质量越好.

PSNR = 10log10

(
R2

MSE

)
(17)

R其中,  表示图像最大可能像素值, MSE 为均方误差,
表示退化图像与复原图像的差异.

MSE =
1

m×n

m−1∑
i=0

n−1∑
j=0

(I(i, j)−K(i, j))2 (18)

m×n I K

(i, j)

其中,  表示图像分辨率,  和 分别为退化图像与

复原图像在像素点 的值.
 4.2   水下图像无参考质量评价

水下图像质量评估 (UIQM)基于人类视觉系统[95],

使用色彩测量指标 (UICM)、清晰度测量指标 (UISM)
和对比度测量指标 (UIConM) 的线性组合综合评价图

像质量.

UIQM = c1×UICM+ c2×UISM+ c3×UIConM (19)

c1 = 0.0282 c2 = 0.2953 c3 =

3.5753

其中, 各自的权重可取为 ,  , 
.

水下彩色图像质量评估 (UCIQE)用于评价水下图

像非均匀的色偏、模糊和低对比度的情况[96], 是色彩

浓度、饱和度和对比度的线性组合:

UCIQE = c1×δc+ c2× conl+ c3×µs (20)

δc conl µs

ci (i = 1,2,3)

其中,  表示色度标准差,  表示亮度对比度,  表示

饱和度平均值,  是对应的权重系数, 一般可

取为 0.468 0、0.274 5和 0.257 6.

 5   实验结果对比与分析

为更直观地体现基于景深的水下图像复原方法的

有效性, 对前文的归纳和分析做补充说明, 本节同时对

基于景深估计的方法和常规复原方法设计实验 ,  在
EUVP[97]公开数据集上, 从主观和客观两个方面, 对不

同的方法进行评价和性能对比. EUVP数据集场景覆盖

全面, 数据样本量大, 使用真实水下数据, 包含超过 12 000
个配对和 8 000个未配对实例, 覆盖全场景水下退化类

型, 包含不同色偏、不同浑浊度、不同光照以及契合实

际作业场景需求的运动模糊, 有力支撑实验设计的权威

性和结论的普适性. 由于目前缺乏专门用于深度图的评

价指标, 仅以最终的图像复原质量进行评估.
 5.1   主观评价

图 5展示了 EUVP数据集中包括不同色偏和清晰

度的图像, 包括退化图像与在不同方法上的复原图像,
对比的方法包括无模型方法 (CLAHE)、基于物理模型

的方法 (MIP、UDCP、IBLA和 ULAP)以及基于深度

学习的方法 (Deep-SESR [98]、U-GAN [99]和 FUnIE- 
GAN[97]).

从对比结果可知, CLAHE 方法的对比度提升明

显, 图像更清晰, 但过度的提升导致图像整体偏亮. MIP
方法复原图像颜色过于饱和, 导致整体效果看起来不

自然, 总体效果表现最差. UDCP方法的亮度偏暗且结

果偏蓝绿色. IBLA方法对偏黄绿色的图像复原效果不

佳, 会导致部分区域偏暗且颜色失真, 对偏蓝色的图像

复原效果较好. ULAP 方法对色彩分布的调节效果稳

定, 亮度对比度均提升明显, 视觉效果相对较好, 但部
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分区域尤其是对偏黄和偏绿的水下图像复原颜色过于

饱和. 几种深度学习的方法复原结果图像清晰, 亮度、

对比度和颜色效果均表现较好. 总体来说 ULAP 方法

和深度学习方法的复原效果较好.
 
 

(a) Input (b) CLAHE (c) MIP (e) IBLA(d) UDCP (f) ULAP (g) Deep-SESR (h) U-GAN (i) FUnIE-GAN 
图 5    水下图像复原结果对比图

 

 5.2   客观评价

对于模型的客观评价, 使用全参考评价指标 SSIM
和 PSNR, 无参考评价指标 UIQM 和 UCIQE 对主观评

价中提到的几种方法进行对比. 表 2 展示了不同方法

全参考评估结果的平均值和标准差.
 
 

表 2    全参考质量评估结果
 

模型 SSIM PSNR (dB)
Input 0.6208±0.0642 17.62±2.88

CLAHE 0.7370±0.0649 19.16±2.28
MIP 0.6366±0.1546 19.51±3.90
UDCP 0.5614±0.1068 15.84±3.61
IBLA 0.7083±0.1429 22.08±4.70
ULAP 0.7339±0.0847 21.89±2.59

Deep-SESR 0.8089±0.0741 27.08±2.74
U-GAN 0.8148±0.0558 26.55±3.16

FUnIE-GAN 0.8021±0.0609 26.22±3.07
 

全参考评估结果表明, 基于深度学习的方法能够

较好地恢复水下图像的结构信息, 且稳定性较强. 基于

物理模型的方法虽稍逊一筹, 但是也能取得较好的复

原效果. EUVP 数据集上无参考质量评估结果的平均

值与标准差如表 3所示.
  

表 3    无参考质量评估结果
 

模型 UIQM UCIQE
Input 2.46±0.52 0.5677±0.0472

CLAHE 2.88±0.36 0.6043±0.0327
MIP 1.86±0.65 0.6176±0.0570
UDCP 1.82±0.47 0.6023±0.0466
IBLA 2.13±0.53 0.6084±0.0478
ULAP 2.14±0.54 0.6210±0.0530

Deep-SESR 2.96±0.36 0.5854±0.0470
U-GAN 2.78±0.41 0.5858±0.0512

FUnIE-GAN 2.86±0.38 0.5921±0.0457
 

无参考评估结果表明, 基于物理模型的方法虽然

UIQM 不如基于深度学习的方法, 但是 UCIQE 的表现

比之更好.
实验结果表明, 深度学习模型凭借端到端特征学

习能力, 在全参考指标上超越物理模型方法, 有效恢复
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图像结构与色彩; 无参考指标揭示了物理模型在局部

对比度增强方面的潜力. 总体来说深度学习方法在主

观视觉质量和客观稳定性上表现更优.

 6   总结与展望

本文系统综述了基于景深估计的水下图像复原方

法, 从物理退化机理、传统算法、深度学习模型到新

兴技术, 全面梳理了该领域的研究进展与核心挑战, 尽
管目前已经取得了很多的研究成果, 仍存在一些问题

亟待解决或深入研究.
1) 物理模型方法依赖人工设计特征与光学假设,

虽在实时性场景中表现高效, 但难以应对复杂退化导

致复原结果存在色彩失真与伪影残留.
2)深度学习方法面临计算成本高、泛化能力弱及

物理可解释性不足的瓶颈, 可采用模型蒸馏、动态网

络剪枝压缩参数量的轻量化设计.
3) 实时性需求与计算资源矛盾, 现有方法大多仅

关注图像的复原质量, 而忽视了算法的实时性, 高精度

模型推理速度慢, 难以满足 AUV 等设备的实时交互

需求.
4) 关注水下人工光源, 目前大多数研究都聚焦于

自然光下的图像复原, 而深海中人工光照是探测活动

的主要辅助光源, 存在非均匀照射、局部过曝等问题,
与自然光下的复原机制差异显著.

5) 多帧连续图像利用不足, 现有方法集中于单幅

图像复原, 对水下多帧图像处理文献较少, 而 AUV 在

探索过程中由远及近, 可以获取到多帧图像, 通过多帧

连续水下图像优化更准确的深度图, 以得到精度更高

的复原图像.
只有不断通过深入研究和技术创新, 才能够实现

高质量高精度的水下图像复原技术.
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