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摘　要: 临近降水预报是一项重要的时空序列预测任务, 在农业、交通等诸多气象相关领域有广泛应用. 基于深度

学习的雷达回波外推是目前常用的临近预报方法, 然而现有方法在捕捉雷达回波的复杂时空模式时存在局限. 随着

时间推移这些方法的性能显著下降, 难以准确预测降水的时空演变. 本文提出一种融合全局模式和局部变化的

GloCal-Net模型. 该模型基于混合Mamba-Transformer专家的 U-Net架构, 旨在通过优化特征提取机制, 增强对雷

达回波序列复杂模式的捕捉能力. 为验证所提出的模型, 在九江真实雷达数据集上进行了对比实验和消融实验. 与
主流深度学习模型相比, 本文提出的模型在 2 h 外推任务中, Heidke 技能得分表现相当, 关键成功指数提升了

4.19%, 分别达到 0.36和 0.29; 学习感知图像块相似性指标降低了 3.70%, 降至 0.31; 结构相似性指标提高了 2.07%,
达到 72.37%. 这些实验结果表明, GloCal-Net在多个关键性能指标上均有所改善, 同时验证了各部分的有效性.
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Abstract: Precipitation nowcasting, a critical spatiotemporal sequence prediction task, has significant applications in
meteorological domains such as agriculture and transportation. While radar echo extrapolation based on deep learning is a
commonly used nowcasting method, existing methods have limitations in capturing the complex spatiotemporal patterns
of radar echoes. The performance of these methods degrades significantly over time, making it difficult to accurately
predict the spatiotemporal evolution of precipitation. This study proposes GloCal-Net, a model that integrates global
modes and local variations. The model is based on a U-Net architecture with hybrid Mamba-Transformer experts,
designed to enhance the ability to capture complex patterns in radar echo sequences by optimizing the feature extraction
mechanism. To validate the proposed model, comparative and ablation experiments are conducted on a real radar dataset
from Jiujiang. Compared with mainstream deep learning models, in the 2-hour extrapolation task, the proposed model
achieves a comparable Heidke skill score and a 4.19% higher critical success index, reaching 0.36 and 0.29 respectively.
The learned perceptual image patch similarity decreases by 3.70%, reaching 0.31. The structural similarity increases by
2.07%, reaching 72.37%. These experimental results show that GloCal-Net improves several key performance indicators
and simultaneously verifies the effectiveness of each component.
Key words: precipitation nowcasting; deep learning; global pattern; local variation; radar echo extrapolation
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随着全球气候变化加剧, 气象灾害频繁发生, 极端

降水易引发山洪、城市内涝等灾害. 提升降水预报的

精度与时效性, 对短临尺度的精细化预测, 成为气象防

灾减灾的迫切需求. 尤其是临近降水预报, 一般指对局

部地区未来 0–2 h的降水进行高分辨率预测, 实现分钟

级时间分辨率和千米级空间分辨率[1,2]. 在此背景下, 多
普勒天气雷达作为主动遥感探测的核心工具, 凭借其

高时空分辨率的雷达回波数据获取能力, 可实现对降

水模式、风暴系统等天气要素的精细化分析, 为气象

预报提供基础数据支撑[3]. 雷达回波外推通过追踪雷达

回波的动态演变特征, 发展成为临近降水预报领域中

一种极为重要的技术手段, 通过提升灾害性天气预警

的精准性, 为应急响应与防灾减灾决策提供了关键时

间窗口.
目前, 我国已建成全球规模最大的综合气象观测

系统, 数值预报技术达到国际先进水平. 然而, 在临近

降水等强对流天气的预报方面, 现有数值模式仍面临

分辨率不足、时效性有限等挑战[4]. 近年来, 深度学习

在时空序列预测、计算机视觉等领域展现出强大的应

用潜力, 其卓越的特征学习能力为复杂系统建模提供

了新范式. 气象雷达数据本质上具有时空属性, 且呈现

出不确定性和周期性特征[5]. 深度学习凭其对复杂模式

的解析能力, 成为挖掘雷达回波时空演变规律的理想

工具. 随着气象业务向精细化方向不断推进, 传统数值

预报的局限性日益凸显, 迫切需要新的技术手段来提

升预报精度和时效性. 在此背景下, 以深度学习为核心

的数据驱动方法迅速崛起, 成为临近降水预报领域的

重要研究方向和技术补充.
本文聚焦于雷达回波序列的时空外推预测问题,

提出了一种融合全局模式和局部变化的 GloCal-Net模
型 .  该模型的设计灵感来源于多尺度混合 Mamba-
Transformer 专家结构[6], 在此基础上进行优化. 其中,
Mamba[7]作为全局模式专家, 能够有效捕获雷达回波中

的全局时空依赖关系, 精准刻画天气系统的整体移动

趋势; 而 Transformer[8]作为局部变化专家, 借助自注意

力机制, 专注于提取局部区域内的细粒度动态变化特

征. 为了评估 GloCal-Net模型的性能, 本文使用了九江

市气象局提供的真实雷达回波数据进行外推实验. 实
验中应用了多普勒天气雷达站台 0.5°仰角的九江及其

周边地区的复合反射率网格数据, 并采用特定方法进

行数据去噪. 综上所述, 本文提出的网络架构为临近降

水预报领域提供了一种研究思路, 主要工作如下.
(1) 提出了一种混合 Mamba-Transformer 专家的

U-Net架构, 能够从雷达回波图像中提取全局模式特征

和局部变化特征, 并结合 U-Net 解码器和带有跳跃连

接的残差块.
(2) 设计了 VSSHFA特征提取模块, 有效提升了特

征的表示能力. 通过混合专家机制, 有效地挖掘了雷达

数据中的时空关系.
(3) 设计了一种有效的数据降噪方法, 用于提高雷

达数据的质量, 从而更好地支持雷达回波外推任务, 为
多普勒雷达数据处理提供方法借鉴.

(4) 基于九江市实际雷达数据进行实验, 评估结果

证明了所提方法在临近降水预报中的有效性.

 1   数据与方法

 1.1   九江市雷达回波数据集

本文使用来自九江市气象局提供的 2021–2022年
多普勒天气雷达数据, 时间分辨率为 5 或 6 min, 空间

分辨率为 1 km, 共搜集约 173 500 张雷达回波强度数

据. 因回波强度转化会为降水引入额外的系统误差, 且
气象部门主要依据雷达回波强度来判断降水状况, 本
研究直接利用雷达回波数据进行降水预测. 九江雷达

站采用 VCP21 体扫模式, 对 9 个具体仰角进行扫描,
应用 0.5°的仰角测定反射率因子, 探测范围在 460 km×
460 km 内. 由于提供的数据集具有时段不连续、包含

缺失值以及存在多种数据噪声, 同时对于降水预测问

题, 考虑到非降水数据占比较多可能会影响模型预测

的准确性. 因此, 需要对雷达回波数据进行预处理.
(1) 雷达回波数据筛选

将时间分辨率统一为 6 min, 确保每个序列必须在

时间上是连续的, 没有缺失的帧, 且至少包含 3 h 的数

据. 由于发生降水的日期同时包含了大量非降水数据,
本文根据日降水量筛选出 281 天的降水事件, 以此构

成所用数据集.
(2) 雷达回波数据去噪

九江雷达站受庐山地形等因素影响, 数据集存在

噪声和干扰. 本文主要采用孤立点滤波和线性滤波两

类去噪方法, 在缓解噪声的同时, 尽可能地保留图像的

主要特征. 此外, 本文通过设置掩膜的方式去除雷达回

波中心区域的杂波噪声. 去噪前后雷达回波图像示例

如图 1所示.
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(a) 去噪前 (b) 去噪后 
图 1    去噪前后雷达回波图像

 

L = µ+ r×v

孤立点通常表现为与周围像素值差异较大的单个

像素点. 对于每个像素点计算其与邻域内像素点的距

离均值 μ 和标准差 v. 定义阈值 , r 为可调节

参数. 若像素点与邻域内像素点的平均距离大于 L, 则
将其视为孤立点并移除.

O(i, j)

线性过滤器通过定义特定的卷积核, 对图像进行

卷积操作, 以实现对噪声的抑制. 对于每个像素点, 其
输出值 由邻域内像素值与卷积核权重的加权和

计算得到:

O(i, j) =
∑k

m=−k

∑k

n=−k
I(i+m, j+n)×K(m,n) (1)

I(i+m, j+n) (i+m, j+n) K(m,n)

(m,n)

其中,  表示像素点 的值, 
表示卷积核在位置 处的权重, k 为卷积核的半径.

高斯滤波器是一种特殊的线性滤波器, 其卷积核

的权重由高斯函数计算得到. 高斯函数的形式为:

K(m,n) =
1

2πσ2 e
−m2 +n2

2πσ2 (2)

σ其中,  是高斯分布的标准差. 将权重应用于卷积操作

中, 得到:

O(i, j) =
∑k

m=−k

∑k

n=−k
I(i+m, j+n)×

1
2πσ2 e

−m2 +n2

2πσ2

(3)

I(i+m, j+n)

O(i, j)

每个邻域像素 乘以对应的高斯权重,
然后求和得到新的像素值 . 高斯滤波器通过给予

靠近中心像素的邻域像素更高的权重, 实现了对高斯

噪声的有效抑制. 此外, 本文根据基本反射率有效范围,
将全部数据限制在 0–70 dBZ之间.

(3) 数据集分区实现

首先, 将雷达回波数据缩放到 256×256像素, 并映

射到 0–1 的范围内. 由于本文仅选取了出现降水日期

的数据, 日期之间可能出现非连续数据. 考虑到雷达数

据时间分辨率为 6 min, 将数据统一控制在每天 240帧,
并在每日内进行滑动窗口划分, 以确保数据的连续性.
本文数据集共有 6 182组序列, 其中训练集有 5 000组,

验证集包含 500组, 其余 682组序列作为测试集. 每个

序列包含 30 帧雷达回波图像, 前 10 帧作为输入来预

测后 20 帧的图像数据, 即输入 1 h 来预测后 2 h 数据.
 1.2   评价指标

本研究采用均方误差 (MSE) 作为损失函数, 衡量

预测图像与实况图像之间的差异, 计算公式如下:

MSE＝

∑n

i=1
(xi−yi)2

n
(4)

xi yi其中,  是真实值,  是预测值, n 是样本的数量.
为了评估临近预报的准确性, 本文计算了在 20 dBZ、

35 dBZ 和 45 dBZ 阈值下的 Heidke 技能分数 (Heidke
skill score, HSS)和关键成功指数 (critical success index,
CSI). 基于指定阈值, 将预测值和观测值二值化, 超过

阈值的像素设为 1, 否则设为 0. 首先, 计算真阳性 (TP)、
假阳性 (FP)、真阴性 (TN)和假阴性 (FN), 如表 1所示.
 
 

表 1    降水预测混淆矩阵
 

类别 预测值=1 预测值=0
观测值=1 TP FN
观测值=0 FP TN

 

进一步计算 HSS 和 CSI, HSS 衡量预测相对于随

机概率的改进程度, CSI 评估预测的降水量是否超过预

定义的阈值, 计算公式如下:

HSS=
2×(T P×T N −FN×FP)

(T P+FN)(FN +T N)+ (T P+FP)(FP+T N)
(5)

CSI =
T P

T P+FP+FN
(6)

接着, 采用了结构相似性 (structural similarity,
SSIM) 和学习感知图像块相似性 (learned perceptual
image patch similarity, LPIPS) 指标作为图像质量评估

指标[9], 对预测结果进行综合评估. SSIM 结合亮度、对

比度和结构比较来评价图像质量, 是考虑了图像结构

和视觉感知特性的评价指标, 能够更准确地反映图像

之间的相似性和质量. 两个图像块 x 和 y 之间的 SSIM
计算如下:

SSIM(x,y) =
(2µxµy+C1)(2σxy+C2)

(µ2
x +µ

2
y +C1)(σ2

x +σ
2
y +C2)

(7)

µx µy σx σy σxy

C1 C2

其中,  、 是平均值,  、 是标准差,  是协方

差,  和 是常数, 为避免因除以 0 而产生计算误差

的情况.
LPIPS 通过利用深度卷积网络学习到的特征来评

估感知相似性. 与传统的度量不同, LPIPS 在深度特征
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空间中计算距离, 与视觉感知的相关性更好. 定义如下:

LPIPS(x,y) =
∑

l

1
HlWl

∑
h,w

∥∥∥wl⊙ (yl
hw− xl

hw)
∥∥∥2

2 (8)

xl
hw yl

hw (h,w) wl其中,  和 是来自层 l 位置 的特征,  表示学

习到的权重.
 1.3   相关方法

 1.3.1    传统方法

传统的临近降水预报主要包括数值模式预报和传

统外推方法. 数值天气预报 NWP[10]核心思想是通过数

值方法将大气的物理、动力学规律转化为数学模型,
并使用计算机对这些模型进行求解, 得到天气预报. 传
统的雷达回波外推方法主要有质心跟踪法[11]、交叉相

关法[12]和光流法[13]. 质心跟踪法通过追踪降水区域的

质心变化来估算运动, 交叉相关法利用回波模式的空

间相关性, 而光流法则基于光流场计算来预测降水运

动. 然而, 传统方法大多适用于降水模式变化较小的情

况, 在处理复杂气象条件时存在显著局限, 对噪声和天

气系统的非连续性较差.
 1.3.2    深度学习方法

基于深度学习的临近降水预报通常采用雷达回波

数据, 凭借其强大的特征提取与学习能力, 深入挖掘雷

达回波数据中隐藏的时空模式和规律.
Shi 等人[14]通过扩展全连通 LSTM 提出了 Conv-

LSTM 模型, 使其在转换过程中融入了卷积结构. Shi
等人[15]进一步提出 TrajGRU 模型, 引入了光流法来学

习像素之间的时空关联. Wang等人[16–18]提出 PredRNN、
PredRNN++和 PredRNN-V2 网络, PredRNN 引入了时

空 LSTM单元, PredRNN++加入了梯度高速公路单元,
PredRNN-V2综合运用时空记忆流、ST-LSTM和反向

计划采样等技术, 有效捕捉长时间依赖关系, 但模型结

构复杂同时训练难度增大. Wang 等人[19]进一步提出

MIM 网络, 引入两个记忆模块捕捉时空动态中的非平

稳和近似平稳特性. Gao 等人[20]提出一种轻量级 CNN
模型 SimVP, 以简单结构和端到端训练实现高效视频

预测. Trebing 等人[21]提出 SmaAt-UNet, 引入 CBAM
注意力机制到 U-Net 中, 使用深度可分离卷积来减少

模型参数量和运算量. Yang 等人[22]提出了 AA-Trans-
UNet 模型, 在 TransUNet 的基础上增加了卷积块注意

力模块、深度可分离卷积和注意力增强模块. Luo等人[23]

将 U-Net 预测机制融入 RNN 作为 GAN 生成器, 证实

GAN正则化损失能有效缓解预测模糊问题. DeepMind
团队[1]探索了深度生成模型 DGMR, 结合条件生成对

抗网络和回归任务, 提高回归问题中的预测准确性和

鲁棒性. Tian等人[24]提出了 Nowcast-Net模型, 结合深

度学习技术与物理演化原理. 然而, GAN 在进行对抗

训练时存在不稳定性, 若缺乏明确的潜在变量解释容

易陷入崩溃[25].
综上所述, U-Net 结构具有良好的灵活性和适应

性, 使其能够有效挖掘雷达回波数据中的时空模式, 在
临近降水预报中更有前景.

 2   基于 GloCal-Net的临近降水预报模型

Xt ∈
RC×H×W

X = {X0, · · · ,Xt}

已有研究将临近降水预报建模为一个时空预测

问题 [ 2 6 , 2 7 ] .  将 t 时刻雷达回波序列表示为张量

, C 表示通道, H 和 W 分别表示高度和宽度. 用
表示一段时间内的回波序列, 则该问题

可表示为给定之前的 m 个观测值, 预测未来长度为 k
的最有可能的序列:

X̃t+1, · · · , X̃t+k = argmax
Xt+1,··· ,Xt+k

P(Xt+1, · · · ,Xt+k |Xt−m+1, · · · ,Xt)

(9)

 2.1   GloCal-Net 模型

F0 ∈ RH×W×64

本文提出的 GloCal-Net 模型如图 2 所示, 遵循编

码器-解码器范式, 并通过嵌入残差块的跳跃连接[28],
实现了低层与高层特征的高效整合. 模型的左侧是带

有下采样层的编码器, 在编码器中嵌入了 VSSHFA 模

块, 其主要功能是从输入的雷达回波序列中提取融合

全局模式和局部变化的时空特征信息. 当面对分辨率

为 H×W×C 的输入图像, 在初始阶段施行双重卷积操

作, 将其转化为特征映射 .

具体而言, 模型对输入图像进行双重卷积和最大

池化处理, 其目的在于增加特征图的通道数同时缩小

图像的尺寸. 在每个双卷积层之后, 特征图经过 VSSHFA
模块以及相应的下采样层得到融合特征. 模型架构右

侧为解码器, 采用双线性插值进行上采样. 通过带有残

差模块的跳跃连接, 将各层 VSSHFA 模块输出的特征

图信息, 与上采样获取的特征图信息融合. 最终, 借助

逐通道卷积操作输出预测图像. GloCal-Net 模型在不

同的尺度上同时提取全局和局部特征, 并且在每个阶

段都保留丰富的特征信息, 有助于提升图像重建质量,
从而优化模型的整体性能.
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图 2    GloCal-Net模型架构

 

VSSHFA模块引入了混合Mamba-Transformer专
家机制, 将全局模式和局部变化角色分配给两个专家.
具体来说, 该模块由两个部分构成, 视觉状态空间 VSS[29]

模块通过独特的状态空间机制, 能够有效地捕捉雷达

回波序列中广泛的全局模式, 同时增强局部建模能力,
高频注意力机制 HFA[30]专注于提取局部变化特征. 之
后, 通过门控融合单元进行特征融合.

接下来, 本文将详细阐述这两个模块分别从雷达

回波序列中提取全局特征和局部特征的过程. 两者结

合为雷达图像分析提供了强大的特征表示能力, 使分

析结果更加准确和全面.
 2.2   VSS 模块

x(t) ∈ R h(t) ∈ RN

y(t) ∈ R

状态空间模型 (state space model, SSM) 是一类经

典的线性时不变系统, 该系统将一个一维的输入函数或

序列 , 通过中间隐藏状态 映射到输出响

应 . 连续时间 SSM可以表示为线性常微分方程:

h′(t) = Ah(t)+Bx(t) (10)

y(t) =Ch(t)+Dx(t) (11)

A ∈ RN×N B ∈ RN×1 C ∈ RN×1 D ∈ R1其中,  、 、 和 表示加

权参数.

[ta, tb] h(t) t = tb

为了集成到深度模型中, 对这种连续系统进行了

离散化, 对于时间间隔 , 隐藏状态变量 在

处的解析解可以表示为:

h(tb) = eA(tb−ta)h(ta)+eA(tb−ta)
∫ tb

ta
B(t)x(t)e−A(t−ta)dt (12)

∆i dt|ti+1
ti = ∆i通过引入时间尺度参数 , 即 , 通常零阶

h(tb)保持方法被用作离散化规则,  可以离散为:

hb = eA(∆a+···+∆b−1)
(
ha+

∑b−1

i=a
Bixie−A(∆a+···+∆i)∆i

)
(13)

[a,b] b = t a = t−1

∆i = ∆

其中,  是相应的离散步长间隔, 令 、 ,
取固定时间步长 、常数矩阵 B i=B ,  将式 (13)
简化得到 SSM 离散化的通用递推形式, 则离散 SSM
方程可以写成:

ht = e∆Aht−1+∆Bxt (14)

yt =Cht +Dxt (15)
为克服线性时不变 SSM 在捕获上下文信息方面

的局限性, S6引入输入依赖的选择机制, 动态调整状态

更新过程. 然而, 时变加权参数使隐藏状态复杂化, 卷
积无法适应动态权重因而不适用. S6 利用与状态更新

方程相关的递归关系, 通过关联扫描算法, 以线性时间

复杂度高效计算响应. 在自然语言处理任务中, S6的顺

序扫描操作与时间序列数据的处理需求非常契合. 但
在图像数据处理中, 由于图像数据非顺序且包含丰富

空间信息, 直接应用顺序扫描方法存在困难. 因此, 采
用选择性扫描方法处理输入数据, 提出了二维选择性

扫描 SS2D 模块. 该模块保留了 S6 的优势, 同时适应

图像数据特性, 有效捕捉空间信息.
VSS 模块输入经过初始归一化层, 输出分成两个

信息流. 在两个路径中, 输入特征均经过线性变换层和

SiLU 激活函数进行处理. 在第 2 个路径中, 在线性层

和激活函数之间加入深度可分离卷积操作, 保持计算

效率的同时保留了局部特征. 随后, 通过 SS2D 模块进

行更深入的特征提取. 接着使用层归一化对特征进行

标准化, 并通过逐元素生成的方式将两个分支的特征
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进行融合. 融合后的特征经线性层混合并与残差连接

结合, 最终形成 VSS模块的输出结果.
SS2D 由扫描扩展操作、S6 模块和扫描合并操作

这 3个部分构成. 如图 3所示, 扫描扩展操作将输入图

像沿着按行正序、列正序、行逆序和列逆序这 4个不

同方向展开为序列, 与雷达回波图像在水平和垂直方

向所呈现的主导空间相关性一致, 能够有效捕捉横向

和纵向的空间依赖, 满足降雨预报的空间特征提取需

求. 该四向组合旨在捕捉不同方向上的空间信息流动,
具有旋转和镜像对称性, 保证全局感受野的同时兼顾

了计算效率. S6模块对这些序列进行特征提取, 确保来

自各个方向的信息被彻底扫描, 从而捕获不同的特征.
 
 

输入图像块
输出图像块y=[y1, y1, …, yL]

yt=Cht+Dxt

ht=Aht−1+Bxt

S6 模块
扫描扩展 扫描合并

A, B=eΔA, ΔB

 
图 3    SS2D模块

 

最后, 将 4 个方向的序列通过扫描合并重新组合,
恢复输出图像尺寸与输入一致. SS2D模块继承选择性

扫描机制的线性复杂度优势, 从多方向对降水特征建

模, 有效捕捉降水事件的长距离依赖和全局模式.
 2.3   HFA 注意力机制

X ∈ RH×W×C

HFA注意力机制如图 4所示, 采用局部窗口自注意

力来聚焦于降水特征的局部细节. 该设计采用简单的非

重叠窗口划分实现, 既能捕捉降水现象的局部变化特征,
又避免了全局注意力机制的冗余计算. 给定输入序列

, 设置窗口尺寸为 ws, 对于每行或每列来说:

GH =
H
ws
, GW =

W
ws

(16)

GT =GH×GW (17)

GH GW

GT

其中,  和 分别为每行每列的窗口组数, 整张图片

共有 组窗口.
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图 4    HFA注意力机制

 

X ∈ RGH×GW×ws×ws×C然后将输入重塑为 , 每个自注

意头通过线性变换从输入矩阵 X 中计算查询 Q、关键

字 K 和值 V 矩阵:

Q = XWq, K = XWk, V = XWv (18)

Wq Wk Wv ∈ RC×Ck Ck = h×dk其中 ,   ,   ,   是可学习参数 ,   ,

dkh 是注意力头的个数,  是每个注意力头的通道数.

接下来, 在 Q、K、V 之间执行注意力操作, 并进行

加权求和得到自注意力头的输出:

Attention(Q,K,V) = Softmax
(

QKT
√

dk

)
·V (19)

HFA模块沿用了 Transformer模块的基本结构, 其

核心结构包括 HFA 自注意力机制和前馈神经网络

FFN, 通过常用的跳跃连接和层归一化来稳定训练过

程, 并使用深度可分离卷积提高局部特征的提取能力.

其中, FFN 对每个位置的特征进行独立的非线性变换,

进一步增强了模型对复杂降水模式的表达能力. HFA

模块通过非重叠窗口划分, 将自注意力计算限制在局

部窗口内, 显式引入空间局部性约束, 应对降水事件中

局部对流特征演变的同时降低了计算复杂度.

 2.4   门控融合单元

Xg Xl

XGloCal

门控融合单元自适应整合并行网络分支提取的全

局和局部特征, 通过两分支结构捕捉互补的空间信息.

首先进行门控计算, 将全局特征 和局部特征 沿通

道维度拼接, 并通过卷积层生成融合张量 . 然后,

将融合张量沿通道维度分为两个门控因子.

XGloCal =Conv(Cat(Xg,Xl)) (20)

Z,R = Sigmoid(XGloCal) (21)

其中, Z 和 R 分别是全局特征和局部特征对应的遗忘

矩阵, 控制需要遗忘或保留的特征信息.

接着, 在门控融合阶段, 利用门控因子对两分支进

行加权融合:

计 算 机 系 统 应 用 http://www.c-s-a.org.cn 2026 年 第 35 卷 第 2 期

70 专论•综述 Special Issue

http://www.c-s-a.org.cn
http://www.c-s-a.org.cn
http://www.c-s-a.org.cn
http://www.c-s-a.org.cn
http://www.c-s-a.org.cn


F = Z⊗Xg+R⊗Xl (22)

⊗其中, F 是两部分融合后的输出,  表示逐元素乘法.
门控机制能够有效缓解全局和局部特征之间的数

值差异, 克服了传统线性融合在特征分布差异较大时

失效的问题, 实现特征融合的自动平衡与优化.

 3   实验分析

 3.1   实验细节

本文采用九江市真实雷达数据集对模型进行评估,
旨在优化外推精度与内存使用之间的平衡. 为了验证

所提模型的科学性和有效性, 设计了一系列训练和测

试方案, 包括对比实验和消融实验. 所有实验均在 Py-
Torch框架下实现, 使用 NVIDIA GeForce RTX A6000

1×10−4GPU (48 GB)进行运算. 实验应用学习率 的 Adam
优化器, 批量大小为 8, 并以 L2 损失作为优化目标. 通
过引入计划采样策略, 逐渐减少模型对真实标签的依

赖, 降低过拟合风险, 使其能够适应自身生成的数据,
提升模型的泛化能力和鲁棒性.
 3.2   实验结果

f = 10 f = 20

为验证 GloCal-Net在临近降水预报任务中的有效

性和可行性, 本文在九江雷达数据集上进行实验, 并与

ConvLSTM、TrajGRU、SmaAt-UNet、PredRNN-
V2和 SimVP这 5种主流雷达回波外推模型进行对比.
各模型的评估指标结果如表 2 所示. 为了评估模型对

未来 1 h 和 2 h 的预测能力, 分别使用 、

表示外推 10帧和 20帧的平均结果.
 
 

表 2    各模型在九江雷达回波数据测试集上的检验结果
 

模型
HSS↑ CSI↑ LPIPS↓ SSIM↑

f = 10 f = 20 f = 10 f = 20 f = 10 f = 20 f = 10 f = 20

ConvLSTM 0.424 0 0.322 8 0.326 6 0.246 0 0.348 0 0.374 4 0.688 9 0.635 4
TrajGRU 0.420 1 0.317 5 0.317 7 0.237 7 0.354 8 0.389 2 0.668 1 0.612 6

SmaAt-UNet 0.448 6 0.352 8 0.353 5 0.270 1 0.344 3 0.374 2 0.724 8 0.669 6
PredRNN-V2 0.436 2 0.339 1 0.327 4 0.254 8 0.330 2 0.363 4 0.719 3 0.661 1

SimVP 0.446 4 0.360 1 0.346 1 0.275 9 0.328 6 0.353 5 0.734 2 0.709 0
GloCal-Net 0.451 3 0.366 2 0.360 7 0.287 4 0.310 1 0.340 9 0.745 0 0.723 7

注: 最优结果以粗体标注
 

从表 2 可知, GloCal-Net 在 4 种评估指标上均有

提升. 在降水预测准确性方面, 其 HSS 和 CSI 指标值均

值略高于 SimVP, 且显著优于其他模型. 在图像质量评

估方面, GloCal-Net的 LPIPS 值最低, 表明其生成的图

像与真实图像的感知差异最小; SSIM 值在 1 h 和 2 h
外推时分别达到 74.50%和 72.37%, 高于其他模型, 说
明该方法在生成外推图像时精度和清晰度更高.

为全面评估网络的预测精度, 本研究在不同雷达

回波强度阈值条件下, 计算了各模型 HSS 和 CSI 指标

值, 结果见表 3. 总体而言, 雷达外推模型在高阈值时性

能较差, 这表明在高雷达回波强度场景下, 降雨预测的

准确性需要重点关注. 在 20 dBZ、35 dBZ 和 45 dBZ
这 3 种阈值下, GloCal-Net 的 HSS 值和 CSI 值均优于

其他对比模型. 以 35 dBZ 阈值为例, GloCal-Net 的
HSS 指标与 SimVP相当, 相较于 SmaAt-UNet和 Pred-
RNN-V2模型, 其 HSS 指标分别提高了 2.50%和 6.70%.
在 45dBZ 阈值下, 其 HSS 指标较 SmaAt-UNet 提高

6.43%, CSI 值较 SimVP 提高 12.01%, 表现出 GloCal-
Net 在高阈值条件下的优势. 综上所述, 本文提出网络

在不同雷达回波强度阈值下均能保持较高的预测精度.

如图 5所示, 本文进一步绘制了 0–20帧时各指标

值的折线图, 展示了各模型每帧评估指标的变化趋势.
可以看出, 随着外推步长的增加, 所有模型的预测准

确性呈现出逐渐下降的趋势. 尽管如此, 在不同的时

间步下 , GloCal-Net 模型的评估指标整体优于其他

模型.
  

表 3    不同阈值下各模型的 HSS 和 CSI 指标检验结果
 

模型
HSS↑ CSI↑

20 dBZ 35 dBZ 45 dBZ 20 dBZ 35 dBZ 45 dBZ
ConvLSTM 0.520 4 0.320 6 0.127 3 0.431 8 0.226 0 0.080 1
TrajGRU 0.538 2 0.305 1 0.109 4 0.429 8 0.214 3 0.068 9

SmaAt-UNet 0.566 2 0.352 5 0.139 9 0.463 4 0.242 6 0.104 2
PredRNN-V2 0.542 3 0.338 6 0.136 4 0.440 7 0.231 7 0.092 1

SimVP 0.575 6 0.358 3 0.146 6 0.473 0 0.248 3 0.106 6
GloCal-Net 0.588 5 0.361 3 0.148 9 0.483 5 0.259 3 0.119 4

注: 最优结果以粗体标注
 

为更直观对比 GloCal-Net模型与其他模型在雷达

回波强度和分布预测中表现, 本文选取了一组具有代

表性的雷达回波序列作为示例. 图 6显示, 随着时间推

移, 各雷达回波外推方法预测结果均变差且图像变得

模糊. 对比分析 6种模型的未来 2 h降雨预测结果发现,
GloCal-Net 模型预测效果最接近原始雷达回波图像.
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ConvLSTM 和 TrajGRU 模型仅能预测出回波强度区

域的大致轮廓, 而其他模型则能保留更多细节. SmaAt-
UNet、PredRNN-V2模型和 SimVP模型在预测时效性

方面表现较好, 但局部细节的预测精度欠佳. 总体而言,
GloCal-Net模型能够更精准且清晰地呈现出整体和局

部的回波状态.
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图 5    不同阈值下各模型 0–20帧 HSS 和 CSI 指标对比
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图 6    模型预测结果可视化示例

计 算 机 系 统 应 用 http://www.c-s-a.org.cn 2026 年 第 35 卷 第 2 期

72 专论•综述 Special Issue

http://www.c-s-a.org.cn
http://www.c-s-a.org.cn
http://www.c-s-a.org.cn
http://www.c-s-a.org.cn
http://www.c-s-a.org.cn


此外, 为评估不同模型在实际应用场景中的效率

与复杂性, 本研究对关键量化指标进行分析, 包括模型

参数量 (Params)和推理时间 (Inference time), 具体结果

如表 4所示. 数据表明, GloCal-Net在保持优异预测精

度的同时, 其计算复杂度与推理速度仍处于合理区间.
这表明本文提出的网络架构能够在不显著增加计算开

销的前提下, 有效提升降水预报精度, 体现了该模型在

实际部署中的潜力与适用性.
  

表 4    不同模型的计算复杂度对比
 

模型 Params (M) Inference time (s)
ConvLSTM 16.43 0.671 3
TrajGRU 10.28 1.266 9

SmaAt-UNet 6.03 0.523 5
PredRNN-V2 36.20 1.578 2

SimVP 8.82 0.636 4
GloCal-Net 28.7 0.565 7

 

 3.3   消融实验

为验证 GloCal-Net模型各模块对最终预测效果的作

用, 本文进行了消融实验. 首先, 以 3×3卷积代替VSSHFA
模块以此作为基线模型 (Baseline), 作为整体模型效果

评估基准. 接着, 设计 VSS-Net 和 HFA-Net 两个变种

模型, 分别仅使用全局模式特征提取的 VSS 模块和局

部变化特征提取的 HFA模块的模型. 如表 5结果显示.
  

表 5    消融实验结果
 

模型 HSS↑ CSI↑ LPIPS↓ SSIM↑
Baseline 0.354 3 0.269 0 0.369 7 0.673 6
HFA-Net 0.355 3 0.272 4 0.351 4 0.693 6
VSS-Net 0.361 0 0.274 6 0.341 9 0.716 5
GloCal-Net 0.366 2 0.287 4 0.310 1 0.723 7

注: 最优结果以粗体标注
 

实验依次移除 VSS 模块和 HFA 模块进行独立验

证. 根据表 5的实验结果, GloCal-Net在雷达外推评估

指标上表现更优, 预测结果更精确, 且在视觉感知上更

接近真实图像. 当移除 VSS 模块时, 模型聚焦于高频

特征, 导致 LPIPS 和 SSIM 指标显著下降, 说明模型难

以准确捕捉雷达回波区域轮廓. 而移除 HFA 模块后,
模型在捕捉局部变化细节方面存在不足, 致使 HSS 和

CSI 指标略有降低. 在 VSSHFA 模块融合全局和局部

特征后, 各项指标均有所提升, 充分证明了该模块的有

效性.

 4   结论与展望

本研究提出了一种基于雷达回波外推的临近降水

预报网络 GloCal-Net, 有效提升了临近降雨预报精度,
同时缓解了随外推时间延长而出现的视觉性能模糊问

题. GloCal-Net 构建于混合 Mamba-Transformer 专家

的 U-Net 架构之上, 融合了 VSS 模块与 HFA 模块. 其
中, VSS 模块侧重于提取雷达回波的全局模式特征,
HFA 模块则致力于捕捉局部变化特征, 通过有效融合

实现临近降水预报, 为后续相关工作提供了研究方向.
基于实际业务中的九江雷达回波数据进行的实验显示,
GloCal-Net在不同雷达回波强度阈值下均展现出更优

的模型性能, 预测结果更精确并且视觉上更清晰.
未来, 需增强模型在长时间外推场景下的准确性,

提升模型在聚焦高雷达回波强度时的表现能力. 通过

引入多尺度降雨数据、构建更丰富的降水事件以及应

用更高效的数据去噪方法来优化雷达回波数据, 进一

步提升降水预报的精度与时效性. 同时, 人工智能领域

与气象领域专家之间的深度合作研究至关重要, 为模

型注入更丰富的科学内涵, 增强模型的鲁棒性.
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