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Radar-based Precipitation Nowcasting Network with GloCal-Net

YUAN Chen-Jie', YANG Chao’

'(School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China)

*(Jiangxi Jiujiang Meteorological Bureau, Jiujiang 332005, China)

Abstract: Precipitation nowcasting, a critical spatiotemporal sequence prediction task, has si;gnificant applications in
meteorological domains such as agriculture and transportation. While radarecho e‘xtrapolation based on deep learning is a
commonly used nowcasting method, existing methods have limitations in capturing the complex spatiotemporal patterns
of radar echoes. The performance of these methods degrades significantly over time, making it difficult to accurately
predict the spatiotemporal evolutien of precipitation. This study proposes GloCal-Net, a model that integrates global
modes and local variations. The model is based on a U-Net architecture with hybrid Mamba-Transformer experts,
designed to enhance the ability to capture complex patterns in radar echo sequences by optimizing the feature extraction
mechanism. To validate the proposed model, comparative and ablation experiments are conducted on a real radar dataset
from Jiujiang. Compared with mainstream deep learning models, in the 2-hour extrapolation task, the proposed model
achieves a comparable Heidke skill score and a 4.19% higher critical success index, reaching 0.36 and 0.29 respectively.
The learned perceptual image patch similarity decreases by 3.70%, reaching 0.31. The structural similarity increases by
2.07%, reaching 72.37%. These experimental results show that GloCal-Net improves several key performance indicators
and simultaneously verifies the effectiveness of each component.
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¥ K AUHE VR R
0=XW,, K=XW, V=XW, (18)
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IIRCR AN E] B 2 73k k-
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Attention(Q,K,V) = Softmax(ﬁ) % (19)
HFA B T Transformer AR 3L AR S5 4,
Bt 55 MR HEA [ 78 2 7 LA A e 2 9 2
FEN, i jof 3 PR 0 6 % i 1 2 01— (kR i 1 ik
T, A P VR P T 4 5 3 A AR 80 5D B AE 1O R
ﬁ*JWNﬁﬁﬁmﬁm%@ﬁﬁ@&m#&ﬁﬁﬁ,
b5 99 T R R B A Wl R 0 263 e ). HFA
Bestom o 4 AR ORI, 8 11V 0 SR 22
BRI P, 3R A2 R B 0 5R, IER BK p
R B RC A HE S 1 R ARG 7 5250 2 .
24 JIEHMAERT
I £ BT 13 R 2 3 AT % ) SCHR I 4
T 53 RO T, 3o G 49 52 G MO AR B 2 1 £ .
A AT T, 4 R T X, R A X,
SO0, RS A BRI Xatocal. R
6l A BT 2 1 40 AN TR T
XGlocal = Conv(Cat(X,, X)) (20)

Z,R = Sigmoid(Xgiocal) @2n
Horb, Z RN R 53 59052 4 JRVRF AL AR AR AL 6T L P 388 A
LA, 2 1) i 0 A B R B P RFAE A A
B, R TRRL S B R T192 B8 00 w9 20 Sk
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F=Z®X,+R®X, (22)
Hrb, F R RE G, @ RN IR TeVE.
[ THE ML B8 A 2R A 4 oy A=y R AR AAE 2 T] PR 5
HZER, SO T A% G2 1% il A 7R AIE 43 AT 22 7 ORI
ST ), SEPLRFIERLA ) B B P S5 4.

3 SEE ST
3.1 SKIGYATH

AR SR FH UL T 351 B 0 B A B A AT VA,
B TE LA AMEERE B 55 A7 A8 22 18] (9~ 1. R 7 S6E
FIT BB (VR 25 PRI ROHE, Beit T — R AR FI
W7 R, BN P S0 AT A5G B SRIR I TE Py-
Torch HEZE T~ S2HL, {# ] NVIDIA GeForce RTX A6000

GPU (48 GB) #H{TIE 5. SN FH 2% 51 % 1x1074 ) Adam
MAGRS, HE KN 8, IFLL L2 BRAE N H 5. 8
B GINTTRIRAE S, T30 W7 ok 2 A5 B X6F L S bR 25 1) 4
R, BRAR I POLA KU, A L R0 N B A= 1l 1) B0,
FETHRERL (32 A B J R R
3.2 XWHR

NEIE GloCal-Net 7E I T K SR AT 55 HH 1A 2%
PRI AT Ve, AR SCHE SV TR IR B 4R Bk AT S58, 1 5
ConvLSTM. TrajGRU. SmaAtUNet. PredRNN-
V2 il SimVP i 5 FitA2 3 A [ S B AT A L
F AL VA R bR 25 SR A0SR 2 BToR. N T VE AR AR B X6
AR 1 h M2 h BN S, 9 HIER £ =10, =20
RAAME 10 TTFD 20 Il [~ 35 45

R 2 B RAE TR ok P i e P A B 4 R

. HSS1 csit LPIPS) SSIM?
B f=10 F=go¥ =10 =20 £=10 £=20 £=10 £=20
ConvLSTM 04240 , T 03228 0.3266 0.2460 0.3480 0.3744 0.6889 0.6354
TrajGRU L 04201 03175 0.3177 0.2377 0.3548 0.3892 0.6681 0.6126
SmaAt-UNet 0.4486 0.3528 0.3535 0.2701 0.3443 0.3742 0.7248 0.6696
PredRNN-V2 0.4362 03391 0.3274 0.2548 0.3302 0.3634 0.7193 0.6611
SimVP 0.4464 0.3601 0.3461 0.2759 0.3286 0.3535 0.7342 0.7090
GloCal-Net 0.4513 0.3662 0.3607 0.2874 0.3101 0.3409 0.7450 0.7237

TE: A SR LU b

MZE 2 T4, GloCal-Net £ 4 FhiFf5 ks L1 H
Tt TE BRI AL 1 7 T, L HSS A CST Fabr{E 3
{EBE =T SimVP, H 2 LT HAGAL. 76 BUG 21T
{77 THi, GloCal-Net ] LPIPS {8 5 ik, & W A sl
85 J S UG R 22 F e/, SSIMEAE 1Th 2 h
AMER 23 B3k 5] 74.50% F 72.37%, T HAd AL, i
BHAZ 7 VA AR B4 M PR ST AR P82 AR5 i 2 o .

DR A THTVPAik 9 265 1) T A B2, AR HJF FLAEAN IR B ik
[l 5 P R 25 A, THE T SR HSS F CST 4845
i, £ R 3. B A, LM TE BRI
Al 2, o 70 A e DRI 0 B, R T
VA 5 L E N O%VE. 7F 20 dBZ. 35 dBZ F1 45 dBZ
X 3 Rl {E F, GloCal-Net [) HSS {EA1 CST {H AT
HoAbxF EEAEA . Ll 35 dBZ B {H N1, GloCal-Net ]
HSS #8455 SimVP #H24, ML T SmaAt-UNet il Pred-
RNN-V2 B8, H HSS Fabr s mlfe & 1 2.50% F1 6.70%.
£ 45dBZ B{E T, H HSS 6 ¥ %8 SmaAt-UNet #2755
6.43%, CSI{HL SimVP ##5 12.01%, £ILH GloCal-
Net 76 & BRI 241 T IR 3. 28 LRTiR, A SCHEH W 4%
FEAN[F] B 28 1] 35 560 P55 A2 340 i (P 8 v 14D OO ARS .

WIS R, A% SCE— 4000 T 0-20 WU #-46b
AL, R T 4 BT 5 R0 28 (.
AL Hh, B S 25K g, YR 15075 0
Wi 2 0 e 8 B 38 R B, S R I
615 F, GloGal-Nets B [ty Pt 3 by 44 1 {1 F 3 s
el

K3 ORFEBIE BRI HSS B CSTiRbRER S R

- HSS? csi

20dBZ 35dBZ 45dBZ 20dBZ 35dBZ 45dBZ

ConvLSTM  0.5204 0.3206 0.1273 0.4318 0.2260 0.0801
TrajGRU  0.5382 0.3051 0.1094 0.4298 0.2143 0.0689
SmaAt-UNet 0.5662 0.3525 0.1399 0.4634 0.2426 0.1042
PredRNN-V2 0.5423 0.3386 0.1364 0.4407 0.2317 0.0921
SimVP 0.5756 0.3583 0.1466 0.4730 0.2483 0.1066
GloCal-Net  0.5885 0.3613 0.1489 0.4835 0.2593 0.1194

T LA R LR bR

BB . GloCal-Net #5174 55 JAh A5 R 7 75 i
(e 98¢ 588 B2 AN 7 A P rh R B, AR SCa T — LR
RN E BB FUE 7R B 6 S, B I A
¥, % T8 B AME T VA TN 45 R 322 22 H B 2215
M. 6 L AT 6 AR AR AR OR 2 h B TN 45 SR AL,
GloCal-Net 578 PN 24 R B 13230 Jir 46y o 32k [m] 95 1A 4R
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WAL, R PPAik A TR S B 7E 52 B B 3 55 b ) ke
5584, A S E AL IRAR AT 2, ELFE A
Z ¥ & (Params) FIHEFLAT ] (Inference time), EAA 2 R
N3 4 FioR. HAR R W, GloCal-Net 76 - FE (1 57 TS
FEE (P (R, v 55052 2% 2 5 HE 3 R A7 A T L[]
TX WY AR SCH H ) DX 24 BE A B8 72 AS f 25 38 hn i+ 50T
BRI, A AR TR TR B, 4R3I 1 AR Y A
S B T ) 0l

F 4 AEBEFEERERXLT

A Params (M) Inference time (s)
ConvLSTM 16.43 0.6713
TrajGRU 10.28 1.2669
SmaAt-UNet 6.03 0.5235
PredRNN-V2 36.20 1.5782
SimVP 8.82 0.6364
GloCal-Net 28.7 0.5657

3.3 jHmASCIE y !

SIRAE GloCal-Neg H 704 M Huxt A4 BRI
Fi, ASCHEAT T RIS, B5E, LA 3x3 BHULE VSSHFA
P DL AR A SRR (Baseline), 1F A B AR50 2R
TPAL HEUE. 3235, Wit VSS-Net Al HFA-Net 5 N48 fh
R, 23 TS A6k P s SR 8 R AE SR LK) VSS MR AN )
AR AEFE A ) HFA B PRRY, gk 5 45 R R,

K5 HERSLIR SR

Y HSSY csn LPIPS)| SSIM?
Baseline 0.3543 0.2690 0.3697 0.6736
HFA-Net 0.3553 0.2724 0.3514 0.6936
VSS-Net 03610 0.2746 0.3419 0.7165

GloCal-Net 0.3662 0.2874 0.3101 0.7237
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