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摘　要: 针对分布式混合流水车间调度问题, 围绕最小化最大完工时间和延迟时间的优化目标, 构建了一种基于强

化学习的多策略哈里斯鹰优化算法 (RLMHHO). 算法使用分组混沌初始化策略, 提升初始搜索的随机性与多样性;
引入探索、开发、均衡与精英这 4 组鹰群管理机制, 实现全局搜索与局部开发的协同; 基于深度 Q 网络的强化学

习协调器, 依据 14维状态空间动态选择最优搜索策略. 仿真实验验证了所提算法求解该类调度问题具有更优的解

质量和更强的搜索能力.
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Abstract: A reinforcement-learning-based multi-strategy Harris hawks optimization (RLMHHO) is developed to address
the scheduling problem of distributed hybrid flow-shop, with the optimization objectives of minimizing the maximum
completion time and delay time. The algorithm uses a grouping chaos initialization strategy to improve the randomness
and diversity of the initial search. A four-group eagle management mechanism of exploration, development, balance, and
elite is introduced to achieve synergy between global search and local development. A reinforcement learning coordinator
based on deep Q-networks dynamically selects the optimal search strategy based on a 14-dimensional state space.
Simulation experiments have verified that the proposed algorithm offers better solution quality and stronger search
capability for solving this type of scheduling problem.
Key words: distributed hybrid flow-shop scheduling; Harris hawks optimization (HHO); reinforcement learning; chaotic
mapping

随着工业 4.0和“中国制造 2025”战略的不断推进,

制造系统向分布式、异构与多目标方向演化. 多目标分

布式混合流水车间调度问题 (multi-objective distributed

hybrid flow-shop scheduling problem, MO-DHFSP)因分

布式处理、多目标冲突, 呈现高度组合复杂性, 难以通

过精确算法高效求解[1], 该问题属于典型的 NP-hard问

题, 随着问题规模的快速增长, 依赖精确算法往往难以

在可接受时间内获得高质量解, 其有效求解不仅对于
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提升交付能力、缩短生产周期和降低运营成本具有重

要意义, 同时在智能优化方法研究方面也具有重要的

理论价值.
针对多目标分布式混合流水车间调度问题, 许多

学者提供了解决方法. 例如夏保丽等人[2]提出基于 DQN
与调度规则结合的优化算法, 将分布式流水车间调度

建模为马尔可夫决策过程, 通过强化学习与 9 种规则

协同更新解状态, 提升调度质量与收敛性能. 王镜捷等

人[3]提出多目标社会工程粒子群算法, 融合启发式初始

化、参考解驱动更新与多邻域搜索策略, 提升在分布

式混合流水车间中对最大完工时间、延迟工件数和非

工艺等待时间的优化效果. 轩华等人[4]提出基于改进灰

狼优化算法, 将机器故障和运输时间约束下的分布式

混合流水线重调度问题构建为整数规划模型, 通过该

改进算法对最大完工时间、总能耗和总延期进行多目

标协同优化; 邱荣根[5]提出基于改进非支配排序遗传算

法 (INSGAII), 针对多目标混合流水车间分批调度问题

构建混合整数线性规划模型, 通过协同初始化、混合

交叉及模拟退火局部搜索优化算法性能, 实现碳排放

量和拖期的最小化. Cai 等人[6]针对分布式两阶段混合

流水车间, 提出协作式变邻域搜索方法, 通过多种邻域

结构与协同机制改进搜索过程, 在兼顾最大完工时间

与总拖期的优化中表现出更高的稳定性与解优质量.
Wang 等人[7]针对能耗优化混合流水车间调度问题, 提
出基于模糊相关熵的 NSGA-II 算法. 该方法结合模糊

数学与信息熵理论构建新的拥挤度测度, 并引入反向

学习与关键路径节能策略, 在保证完工时间的同时有

效降低能耗, 提升了算法的搜索效率与解集质量.
哈里斯鹰优化算法 (Harris hawks optimization,

HHO) 是一种由 Heidari 等人[8]于 2019 年提出的元启

发式优化方法. 该算法因其结构简洁、参数较少且求

解效率较高, 已广泛应用于数值优化、工程设计、电

力系统优化等多个工程领域[9,10]. 然而, 目前该算法在

生产调度方向的研究仍相对有限, 现有工作主要集中

于作业车间调度问题[11,12]. 原始的哈里斯鹰优化算法虽

然在连续单目标优化问题上表现出色, 但在处理多目

标分布式混合流水车间调度问题时面临难以处理复杂

约束、搜索效率受限、缺乏自适应调控机制的问题,
导致解的多样性和稳定性难以保证.

针对原始 HHO 算法在离散多目标调度问题中的

局限、传统智能优化算法对搜索参数依赖较强、探索

与开发能力难以平衡以及易陷入局部最优等问题;单纯

强化学习算法在大规模复杂调度场景下训练开销显著

增加和收敛效率下降, 使算法在复杂问题上的效果和

可靠性受限等问题, 本文提出一种基于强化学习的多

策略哈里斯鹰优化 (reinforcement-learning-based multi-
strategy Harris hawks optimization, RLMHHO)算法, 在
保持 HHO全局探索能力的基础上, 通过强化学习动态

调节, 实现了对复杂调度问题的高效求解和稳定优化,
该算法通过 14 维状态空间对搜索过程的进度、解的

质量及种群多样性进行刻画, 以支持策略的自适应选

择. 在此基础上, 设定 7 类候选策略, 由强化学习动态

匹配搜索策略, 用于调控探索、开发、均衡与精英这

4 类群体的比例, 实现群体层面的自适应资源分配. 同
时, 各类群体内部结合专属混沌映射驱动, 使搜索过程

在保持方向性的同时具有一定随机性与扰动性. 奖励

函数综合考虑规模、质量与多样性, 并兼顾多目标调

度的复杂需求. 通过在不同规模算例上的对比实验, 验
证算法在多目标调度中的适应性与鲁棒性.

 1   分布式混合流水车间调度模型

 1.1   问题描述

F

m

n f ∈ {1,2, · · · ,F}

在 MO-DHFSP 中, 系统由 个独立的工厂组成,
每个工厂包含 个顺序加工阶段, 各阶段的并行机器数

量存在差异, 共有 个工件需分配至工厂

完成加工, 每个工件遵循相同加工顺序, 即每道工序需

在某工厂对应阶段的一台机器上加工, 且在同一阶段

内可以选择不同机器并行执行.
 1.2   模型描述

本文涉及的参数符号表见表 1.
 

表 1    模型参数表
 

参数 参数说明

n 工件数量

m 阶段数量

F 工厂数量

f 工厂索引

i, j 工件索引

g 阶段索引

Sg 阶段g的并行机器数量

k 加工阶段g中机器编号

Mf,g,k 工厂f内第g个阶段的第k台并行机

pi,f,g, k 工件i在机器Mf,g,k上的加工时间

Zi,j,f,g,k
工件j在工厂f、阶段g、机器k上优先于工件i加工时为1,

反之为0
di 工件i的交货期

Bi,g 工件i在第g阶段的加工开始时间
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基于以上参数和决策变量, MO-DHFSP 模型与约

束条件如下:

min f1 =Cmax = max
i∈{1,··· ,n}

Ci (1)

min f2 = Ttotal =

n∑
i=1

max(0,Ci−di) (2)

F∑
f=1

Xi, f = 1, ∀i = 1, · · · ,n (3)

S g∑
k=1

Yi, f ,g,k = 1, ∀i = 1, · · · ,n, ∀g = 1, · · · ,m (4)

B j,g ⩾Ci,g−H · (1−Zi, j, f ,g,k), ∀i , j (5)

Bi,g ⩾C j,g−H ·Zi, j, f ,g,k, ∀i , j (6)

Bi,g ⩾C j,g−H ·Zi, j, f ,g,k, ∀i , j (7)

Ci,g = Bi,g+

F∑
f=1

S f ,g∑
k=1

pi, f ,g,k ·Yi, f ,g,k, ∀i,g (8)

Ci =Ci,m, ∀i = 1,2, · · · ,n (9)

Cmax ⩾Ci, ∀i = 1,2, · · · ,n (10)

Tmax ⩾max{Ci−di,0}, i = 1,2, · · · ,n (11)

Xi, f ∈ {0,1} (12)

Yi, f ,g,k ∈ {0,1} (13)

Zi, j, f ,g,k ∈ {0,1} (14)

Bi,g,Ci,g,Ci,Ti ⩾ 0 (15)

式 (1) 表示计算工序的最大完工时间; 式 (2) 表示

计算所有工件的总延迟时间; 式 (3)表示每个工件必须

唯一分配给一个工厂; 式 (4)表示每个工件在每个加工

阶段只能由一台机器加工[13]; 式 (5)表示工件的后一道

工序的起始加工时间不早于前一道工序的结束时间;
式 (6) 和式 (7) 表示在同一台机器上, 任意两个工件的

加工时间不能重叠; 式 (8)表示某阶段上的完工时间为

其加工开始时间与在被分配机器上的加工时间之和[14];
式 (9) 表示工件的总完工时间等于其最后阶段的完工

时间; 式 (10) 表示最大完工时间必须不小于任意工件

的完工时间; 式 (11) 表示总延迟时间的计算方式为各

工件完工时间与交货期差值的非负部分; 式 (12)–式 (14)
定义决策变量的取值范围[15]; 式 (15) 表示所有时间变

量的取值必须大于等于 0.

 2   RLMHHO算法设计

 2.1   编码与解码策略

基于问题特征设计了一种双层编码方式. 该编码

方式将问题决策变量划分为工厂分配层与工件排序层,
结合实际调度语义与算法操作需求, 采用整数与序列

联合编码, 确保染色体表示的可解析性与可操作性.
在编码层面, 每个个体由两部分构成. 第 1部分为

工厂分配向量, 记作:

XF = [x1, x2, · · · , xn], xi ∈ {0,1, · · · ,F −1} (16)

n F xi

xi

其中,  表示工件总数,  为工厂总数,  表示工件被分

配至第 号工厂.
第 2部分为工厂内部工件排序结构, 记作:

S f = [S0,S1, · · · ,Sn f−1] (17)

S f f

n f f

其中,  表示工厂 内被分配工件的调度顺序, 是一组

不重复的工件索引构成的排列序列, 用于控制该工厂

内工件的加工先后顺序.  表示分配到工厂 的工件数量.
XF

S f

解码过程根据工厂分配向量 将工件划分至各自

所属工厂; 在每个工厂内部, 按照调度序列 的顺序依

次安排工件进入排产队列, 调度系统为每道工序采用

“先可用机 (first available machine, FAM)”的规则来确

定机器的选择和在机器上的加工顺序, 并结合问题实

例中给定的加工时间矩阵, 计算各工序的开始与完成

时刻.
 2.2   种群分组与混沌初始化

N将规模为 的种群划分为 4 个功能组, 各组的职

责和初始化策略如下.
(1)探索组. 负责全局搜索, 发现新的搜索区域, 初

始化策略采用随机生成且均匀分布在整个搜索空间中.

表 1　模型参数表 (续)
参数 参数说明

Ci,g 工件i在第g阶段的加工结束时间

Ci 工件i的完工时间

Ti 工件i的延迟时间

Cmax 所有工件的最大完工时间

Tmax 所有工件的最大延迟时间

H 一个充分大的正数

Xi,f 当工件i被分配至工厂f时为1, 反之则为0
Yi,f,g,k 工件i在工厂f、阶段g、机器k上加工时为1, 反之为0
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 x(0)
i, j = l j+U(0,1) · (u j− l j)

i ∈Ge, j ∈ {1,2, · · · ,d}
(18)

Logistic映射公式为:

xt+1 = µxt(1− xt), µ = 4 (19)

µ当参数 =4 时, 该系统呈现强混沌状态, 轨迹完全

不可预测, 初值敏感性最强, 适合进行大范围全局初始化.
(2) 开发组. 负责局部搜索, 精细化已发现的优质

区域, 初始化策略采用在当前最优解附近进行高斯扰

动生成个体: x(0)
i, j = xbest, j+N(0,σ2

init) · (u j− l j)

i ∈Go, σinit = 0.1
(20)

Tent映射公式为:

xt+1 =

{
µxt, 0 ⩽ xt ⩽ 0.5
µ(1− xt), 0.5 < xt ⩽ 1 (21)

µ当 =2 时, 该系统在[0, 1]区间内形成锯齿形周期

轨迹, 适合进行密集区域的等间距扰动.
(3) 均衡组. 负责维持探索与开发的平衡, 初始化

策略采用拉丁超立方采样生成个体.

x(0)
i, j = l j+

πi, j+U(0,1)
|Gb|

· (u j− l j), i ∈Gb (22)

Sine映射公式为:

xt+1 = sin(πxt) (23)

该映射函数生成的轨迹围绕[0, 1]区间做周期性振

荡, 具备在局部与全局之间跳转的能力, 适合用于动态

行为切换频繁的均衡组.
(4) 精英组. 负责保持优质解并引导搜索方向, 所

有个体先随机初始化, 然后根据质量评估动态分配到

精英组.
Chebyshev映射公式为:

xt+1 = cos(t · arccos(xt)), t = 4 (24)

t当 =4 时, 该映射可产生复杂而稳定的高阶轨迹,
用于在精英个体的邻域内执行高频率扰动.
 2.3   哈里斯鹰群优化

 2.3.1    多因子能量计算模型

E

在 RLMHHO 中, 通过模拟鹰群在搜索空间中发

现猎物、围捕猎物、突袭猎物的自然行为, 动态调整

其在解空间中的位置, 逐步逼近最优解. 整个行为建模

过程由猎物能量函数 所驱动, 其动态变化控制着搜索

行为的转换[8,16]. 该能量函数定义如下:

E = 2 ·
(
1−

( t
T

)2
)
·QFt ·SFt ·

(
1+0.1 · sin

(
2πt
20

))
(25)

QFt =

{
0.8, if s < 5
1.2, if s ⩾ 5 (26)

SFt =

{
1.0, if s < 15
1+0.3 · e s−15

10 , if s ⩾ 15
(27)

t T s其中,  表示当前迭代次数,  为最大迭代次数,  为未改

进次数.

 2.3.2    分组位置更新策略

E r以下沿用式 (25) 的全局能量 以及逃逸概率 , 阐

述各条件下 4组鹰群的具体行为.

E ⩾ 1当猎物能量 时, 进入全局探索阶段, 鹰群行

为如表 2所示, 探索策略如下:

Xt+1
exploration =


RandomFactory() if ξi > 0.6
Xbest if 0.3 < ξi ⩽ 0.6
Xt

exploration if ξi ⩽ 0.3
(28)

 
 

表 2    全局探索阶段鹰群行为表
 

组别 位置更新与操作

探索组
ξi ξi > 0.6

0.3 < ξi ⩽ 0.6

探索后采用Logistic混沌值 触发更新: 当 时进行随

机工厂重分配;  时跟随最优解; 否则保持原位

开发组
探索后立即调用Tent映射的交换、插入与局部工厂重分配

3个算子, 对新位置做精细局部开发

均衡组 仅执行探索策略

精英组 在探索策略后进行一次轻量Chebyshev扰动
 

0.5 ⩽ E < 1 r ⩾ 0.5当猎物能量 且 进入软包围, 鹰群

行为如表 3所示, 更新公式为:

Xt+1 = Xt
r −Et | 2(1− r)Xt

r −Xt | (29)
 
 

表 3    软包围阶段鹰群行为表
 

组别 位置更新与操作

探索组 执行软包围后, 仅在工厂内部做小幅随机扰动

开发组
在软包围结果的基础上, 优先触发Tent映射的插入与交换算

子, 对执行序列进行精细排序

均衡组
ϕ ϕ > 0.5

ϕ ⩽ 0.5

先完成软包围; 随后读取一次 Sine混沌值 , 若 , 维持

软包围; 若 , 立即切换至硬包围(式(30))

精英组 在软包围结果附近做Chebyshev轻微扰动
 

0.5 ⩽ E < 1 r < 0.5当猎物能量 且 进入硬包围, 鹰群

行为如表 4所示, 更新公式为:

Xt+1 = Xt
r −Et | Xt

r −Xt | (30)

权重融合公式:
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Xt+1
s = (1−λ)Xt

s+λX
t
r, λ ∈ [0,0.3] (31)

E < 0.5当猎物能量 进入极限开发阶段, 极限开发

鹰群行为如表 5所示.
 
 

表 4    硬包围鹰群行为表
 

组别 位置更新与操作

探索组 仅执行一次硬包围后停止深度操作

开发组 以较高阈值使用Tent混沌映射驱动3个算子协同

均衡组 重复硬包围

精英组 根据式(31)对硬包围结果与现有精英解做权重融合
 
 

表 5    极限开发鹰群行为表
 

组别 位置更新与操作

探索组 保留极小幅随机扰动

开发组
连续执行Tent映射三算子, 直至最近3轮无任何改进, 形成准

局部最优

均衡组 以50% 触发率跟随开发组

精英组
采用Chebyshev映射进行微小扰动, 若微扰无法改进, 则直接

保持上一代位置
 

 2.4   强化学习策略控制

引入强化学习策略控制机制, 取代传统依赖启发

规则的行为调度方式. 该机制通过构建具有区分性与

反馈性的状态向量, 引导策略网络动态选择最优行为,
联动种群分组执行对应策略, 在行为调度与资源配置

之间建立闭环, 引导搜索过程持续向有效区域演化.
 2.4.1    多维状态空间构建

t

为提高搜索过程中的演化特征与策略效果, 控制

器在第 次迭代中构建 14维状态向量:

S t = [rt, it, st,nt,qt,bt,m
(E)
1:5 ,m

(D)
1:3 ] (32)

rt it st

nt qt bt

m(E)
1:5 m(D)

1:3

其中, 向量包含进度率 、改进率 、停滞率 、帕累

托规模比 、质量评分 、负载均衡度 、探索组性

能 和开发组性能 .

策略选择采用深度 Q 网络进行建模, 其行为策略

函数为:

A = {a1,a2, · · · ,a7} (33)

at = π(S t) = argmax
a∈A

Q(S t,a) (34)

ai a1

a2 a3

a4 a5 a6

a7

其中, 每个动作 表征一种搜索行为及其资源重构: 
表示强化全局探索;  表示强化局部开发;  表示平衡

搜索;  表示多样性救援;  表示精英强化;  表示部

分重启;  表示资源重分配.
 2.4.2    多目标奖励函数设计

为学习最优策略, 控制器根据行为效果构造奖励

函数:

rt = 0.4DNt +0.3DQt +0.2Dt +0.1Rt (35)

∆Nt ∆Qt

Dt

Rt

其中,  反映帕累托前沿规模的相对增长;  为两

个目标的瞬时改进幅度;  表示用帕累托点的标准差

衡量多样性;  为规模奖励上限归一化项.
该函数综合奖励解集扩展性、均匀性改进与精英

边界活跃度, 对解集过度聚集予以惩罚. 策略网络依据

该奖励通过标准 DQN更新规则进行训练:

Q (S t,at)← Q (S t,at)

+η
[
rt +γ ·max

a′
Q

(
S t+1,a′

)−Q (S t,at)
]

(36)

η γ at

a′
其中,  为学习率,  为未来折扣因子,  为当前时间选

择的动作,  为下一个状态中所有可能的动作.
为提高学习效率, 采用优先级经验回放进行经验

采样概率计算:

P(i) =
pαi∑

k

pαk
(37)

pi i其中,  表示第 个经验在经验回放缓冲区中的优先级:

pi = |δi|+ ϵ (38)

δi = ri+γmax
a′

Q(S i+1,a′)−Q(S i,ai) (39)

|δi| i ϵ其中,  为第 个经验的 TD误差的绝对值,  为很小的

正数, 确保优先级不为 0.
ε 2.4.3     -贪婪策略与自适应衰减

ε

ε

动作选择遵循 -贪婪策略, 为在探索与开发之间

实现平滑过渡,  取值如下:εt =max
(
εmin, ε×εε_decay

)
ε0 = 0.9, εmin = 0.01, εε_decay = 0.993

(40)

ξ ∼U(0,1) ξ < εt当随机数 满足 时, 强化学习协调

器随机采样 7 组动作空间; 否则选择对应状态的最大

Q值动作. 协调器伪代码如算法 1.

算法 1. 强化学习协调器

输入: 当前状态 state, 动作空间 ActionSpace.
输出: 选定的策略动作 action.

1. Begin
2.　 Function SelectAction(state)

ε3.　　 If random() <   then
4.　　　　 action ← RandomChoice(ActionSpace);
5.　　 Else
6.　　　　 /*前向传播*/
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7.　　　　 Q_values ← DQN.Forward(state);
8.　　　　 /*选择最优动作*/
9.　　　　 action ← ArgMax(Q_values);
10.　　 EndIf
11.　　 Return action;
12.　 EndFunction
13.　 Function UpdateNetwork(state, action, reward)
14.　　 experience ← (state, action, reward, next_state);
15.　　 ReplayBuffer.Store(experience);
16.　　 If ReplayBuffer.Size() ≥ batch_size then
17. 　　　batch ← ReplayBuffer.Sample(batch_size);
18. 　　　/*计算 TD损失、反向传播更新*/
19. 　　　loss ← ComputeTDLoss(batch);
20.　　　 DQN.BackwardUpdate(loss);
21.　　 EndIf
22.　　 If t % target_update_freq = 0 then
23.　　 　/*更新目标网络*/
24. 　　　TargetDQN ← DQN;
25.　　 EndIf

ε ε ε ε26.　　  ← max( _min,  × _decay);
27.　 EndFunction
28. End

 2.5   结构资源调度机制

行为策略的执行往往需匹配特定资源配置, 因此

RLMHHO将策略动作映射至种群结构调整机制, 在策

略动作为结构型策略时, 系统根据结构比例向量对子

群体进行调整.

R∗(t+1) =
[
r∗E ,r

∗
D,r
∗
B,r
∗
H

]
,

∑
i

r∗i = 1 (41)

∆Ni = (r∗i − r(t)
i ) ·N (42)

rE rD rB rH

N ∆Ni

i

其中,  、 、 、 分别表示探索组、开发组、均

衡组和精英组的目标比例、 为总个体数,  表示第

个子群体需增加 (正)或减少 (负)的个体数.
R(t)

i

计算各子群体的目标个体数, 并与当前比例 进

行比较, 通过式 (42)确定第 个子群体需增加或减少的

个体数.
 2.6   RLMHHO 算法流程

RLMHHO算法实现流程如下.
n

m f

Step 1: 初始化参数, 包括种群规模、工件数 、机

器数 、工厂数 、最大迭代次数 T、强化学习参数.
Step 2: 采用 4 种混沌映射初始化种群, 并利用

4 层鹰群分组管理器将种群分为探索组、开发组、均

衡组、精英组.
Step 3: 计算所有个体的双目标适应度, 评估各组

内个体的能量状态和搜索性能.

Step 4: 强化学习协调器基于 DQN 网络 (状态空

间 14维、动作空间 7维)选择搜索策略.

E

Step 5: 各组使用专属混沌映射更新位置, 根据能

量状态 动态调整搜索策略, 执行哈里斯鹰搜索模式,

同时根据强化学习决策动态调整 4层鹰群的比例结构.

εStep 6: 更新帕累托档案, 利用拥挤距离和 -贪婪

策略进行环境选择, 维护解集的多样性和收敛性.

Step 7: 强化学习协调器根据多目标奖励函数计算

收益, 更新 Q值表, 采用优先级经验回放机制提升学习

效率, 实现策略的持续优化.

Step 8: 判断是否达到最大迭代次数 T. 若满足则

输出帕累托前沿解集; 否则返回 Step 3 继续迭代优化,

实现算法的自适应优化.

 3   仿真实验及结果分析

n ∈ {20,50,

70,100,200} m ∈ {3,4,5,6} f ∈ {2,3,
4,5} p ∈ {2,3,4,5}

目前MO-DHFSP尚没有标准实例集, 本文根据文

献[15,17,18]随机生成多个规模实例: 工件数

,  阶段数 ,  工厂数

, 并行机数量 . 交货期通过以下方式确

定: 计算作业的总处理时间作为基准值, 依据 3类紧急

度 (紧急、常规、宽松) 随机选取紧急度系数, 将其与

基准处理时间相乘, 得到最终交货期. 为评估算法在多

目标优化中的表现, 引入生成距离 (generational dis-

tance, GD)、反向生成距离 (inverted generational

distance, IGD)、超体积 (hypervolume, HV)以及帕累托

最优解比率 (RA)这 5项指标, 分别用于评估帕累托前

沿解集的逼近程度、覆盖能力及解集分布的广度和均

匀性[1,18].

 3.1   算法参数校正

α ε γ

L49(74)

为优化 RLMHHO 算法性能, 采用四因子七水平

正交实验设计对关键参数进行校正. 选取 4 个核心因

子: 学习率 、衰减率 、鹰群分组比例与折扣因子 ,

基于 正交表构建实验矩阵, 以覆盖各因子的典

型取值组合, 参数配置见表 6、表 7.

实验规模采用 100×5×3 随机数据集进行测试, 每

组实验独立运行 10 次取平均值, 每组实验运行后, 采

用 5:3:2加权的多目标评价体系, 融合帕累托最优解比

率 (RA)、IGD 与 GD 计算综合得分, 并以田口方法中

的信噪比 (SNR) 作为效应值衡量算法稳健性. 正交实

验结果在表 8 中, 仅展示排名前 10 组数据, 实验结果
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显示在学习率 0.000 1、衰减率 0.993、鹰群分组比例

[0.7, 0.15, 0.1, 0.05]、折扣因子 0.98时, 获得最高 SNR
值−17.29, 该配置在探索与开发间取得良好平衡, 在多

目标优化任务中实现更好的收敛性和多样性平衡.
 
 

表 6    算法参数水平表
 

水平 学习率 衰减率 分组策略 (鹰群分组比例) 折扣因子

1 0.000 05 0.988 探索主导1 0.80
2 0.000 1 0.990 探索主导2 0.85
3 0.000 2 0.993 探索主导3 0.90
4 0.000 5 0.995 基准均衡 0.95
5 0.001 0.997 开发主导1 0.98
6 0.002 0.999 开发主导2 0.99
7 0.005 0.999 5 开发主导3 0.995

 
 

表 7    鹰群分组比例表
 

水平 探索组 开发组 均衡组 精英组 分组策略

1 0.70 0.15 0.10 0.05 探索主导1

2 0.60 0.20 0.15 0.05 探索主导2

3 0.50 0.30 0.15 0.05 探索主导3
4 0.45 0.25 0.20 0.1 基准均衡

5 0.35 0.40 0.20 0.05 开发主导1

6 0.25 0.45 0.20 0.10 开发主导2

7 0.20 0.50 0.20 0.01 开发主导3
 
 

表 8    参数实验结果
 

学习率 衰减率 鹰群分组比例 折扣因子 SNR值 (dB)
0.000 1 0.993 [0.7, 0.15, 0.1, 0.05] 0.98 −17.29
0.001 0.999 5 [0.6, 0.2, 0.15, 0.05] 0.99 −17.89
0.001 0.99 [0.5, 0.3, 0.15, 0.05] 0.8 −17.95
0.003 0.99 [0.45, 0.25, 0.2, 0.1] 0.9 −18.32
0.000 5 0.999 5 [0.35, 0.4, 0.2, 0.05] 0.95 −18.40
0.000 5 0.995 [0.25, 0.45, 0.2, 0.1] 0.8 −18.41
0.000 05 0.988 [0.2, 0.5, 0.2, 0.1] 0.8 −18.65
0.000 05 0.995 [0.6, 0.2, 0.15, 0.05] 0.95 −18.86
0.003 0.993 [0.5, 0.3, 0.15, 0.05] 0.95 −18.8
0.005 0.997 [0.45, 0.25, 0.2, 0.1] 0.8 −19.00

 

 3.2   对比分析

为验证 RLMHHO 算法的有效性, 选择 MOPSO、
MODE、改进 NSGA-II (I-NSGA-II)[19]、DQN[2]以及改

进 Q-learning 人工蜂群算法 (QL-ABC)[20]这 5 种算法

进行对比实验, 每种算法均独立运行 10 次, 并对实验

结果进行统计分析, 结果见表 9–表 12, 加粗为最优结

果, 实例编号含义为“工件数_阶段数_工场数”.
从 IGD指标来看, RLMHHO在多个实例上的 IGD

值保持在 0.000–0.073 范围内, 均显著低于其他算法,
其中多个实例达到 IGD=0.000 的完美表现. 相比之下,
其他算法如 MODE 虽然在个别小规模实例上表现较

好, 但整体稳定性不足; 而 I-NSGA-II、MOPSO、DQN

和 QL-ABC 等算法在多个实例上 IGD 值普遍较高.
GD 指标进一步验证了 RLMHHO 算法的收敛精度优

势, RLMHHO在多个实例上的 GD值保持在 0.02–0.143
范围内 ,  即使在 200 作业的大规模实例上仍能保持

GD 为 0.047 的优异表现. HV 指标显示了算法解集的

覆盖范围和多样性, RLMHHO在多个实例上的 HV值

保持在 0.871–1.000 范围, 其中小规模实例达到 HV=
1.000 的最优水平, 显著高于其他对比算法, 说明其解

集在多目标空间中分布均匀且接近最优前沿. RA指标

反映了算法获得的解集质量, RLMHHO在 8个实例上

获得最高 RA值, 其在多个实例上的 RA值保持在 0.279–
0.811范围内, 均显著高于其他对比算法.
 
 

表 9    各算法 IGD对比
 

实例 RLMHHO I-NSGA-II MOPSO MODE DQN QL-ABC
20_3_2 0.067 0.347 0.278 0.020 0.270 0.169
20_5_3 0.000 0.083 0.155 0.000 0.177 0.000
50_3_2 0.005 0.293 0.322 0.011 0.234 0.212
50_5_3 0.073 0.221 0.468 0.243 0.413 0.414
70_3_2 0.033 0.309 0.391 0.134 0.410 0.405
70_5_3 0.000 0.300 0.416 0.316 0.348 0.447
100_3_2 0.013 0.166 0.302 0.102 0.345 0.254
100_5_3 0.018 0.362 0.429 0.126 0.649 0.427
200_3_2 0.041 0.260 0.373 0.120 0.464 0.352
200_5_3 0.003 0.211 0.347 0.128 0.592 0.297

 
 

表 10    各算法 GD对比
 

实例 RLMHHO I-NSGA-II MOPSO MODE DQN QL-ABC
20_3_2 0.022 0.442 0.383 0.014 0.686 0.294
20_5_3 0.079 0.203 0.408 0.085 0.595 0.071
50_3_2 0.143 0.307 0.319 0.018 0.210 0.475
50_5_3 0.037 0.190 0.362 0.307 0.465 0.360
70_3_2 0.016 0.262 0.271 0.087 0.580 0.254
70_5_3 0.015 0.388 0.428 0.358 0.488 0.581
100_3_2 0.069 0.092 0.237 0.116 0.634 0.196
100_5_3 0.032 0.214 0.478 0.123 0.755 0.323
200_3_2 0.059 0.194 0.256 0.117 0.624 0.288
200_5_3 0.047 0.259 0.291 0.151 0.680 0.295

 
 

表 11    各算法 HV对比
 

实例 RLMHHO I-NSGA-II MOPSO MODE DQN QL-ABC
20_3_2 0.977 0.614 0.851 1.000 0.762 0.872
20_5_3 1.000 0.981 0.949 1.000 0.943 1.000
50_3_2 0.987 0.676 0.596 0.900 0.728 0.706
50_5_3 0.871 0.579 0.470 0.782 0.506 0.676
70_3_2 1.000 0.767 0.695 0.892 0.687 0.734
70_5_3 0.939 0.580 0.571 0.702 0.654 0.597
100_3_2 0.900 0.851 0.791 0.829 0.745 0.809
100_5_3 0.941 0.784 0.655 0.801 0.551 0.705
200_3_2 0.924 0.711 0.755 0.888 0.503 0.741
200_5_3 0.927 0.769 0.759 0.868 0.566 0.803

 

结果显示, RLMHHO 算法具有良好的可扩展性.
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在小规模实例上, 所有算法表现相对较好, 但 RLMHHO
能够达到完美性能; 在中等规模实例上, 算法性能开始

分化, RLMHHO的优势更加明显; 在大规模实例上, 其
他算法性能显著下降, 而 RLMHHO仍能保持优异表现.
 
 

表 12    各算法 RA对比
 

实例 RLMHHO I-NSGA-II MOPSO MODE DQN QL-ABC
20_3_2 0.309 0.013 0.120 0.490 0.000 0.067
20_5_3 0.279 0.115 0.032 0.271 0.012 0.291
50_3_2 0.512 0.040 0.030 0.322 0.083 0.014
50_5_3 0.737 0.146 0.000 0.076 0.000 0.041
70_3_2 0.588 0.058 0.039 0.272 0.000 0.043
70_5_3 0.898 0.035 0.000 0.047 0.021 0.000
100_3_2 0.612 0.089 0.063 0.145 0.000 0.091
100_5_3 0.640 0.077 0.000 0.250 0.000 0.033
200_3_2 0.742 0.025 0.000 0.233 0.000 0.000
200_5_3 0.811 0.039 0.000 0.150 0.000 0.000

 

图 1 和图 2 为不同规模数据集下, 算法在最大完

工时间 (makespan)与最大延迟时间 (total tardiness)两
个目标上的帕累托前沿分布情况.
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图 1    规模 50_3_2帕累托前沿效果对比图
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图 2    规模 100_5_3帕累托前沿效果对比图

 4   结语

本文提出的 RLMHHO 算法有效解决了多目标分

布式混合流水车间调度问题, 通过融合强化学习协调

器、4组鹰群分组管理和增强混沌映射系统, 实现了完

工时间和总延迟时间的协同优化. 实验结果表明, 该算

法具有良好的收敛性和解集多样性. 然而, 算法仍存在

改进空间, 强化学习协调器的状态空间设计有待进一

步优化, 可考虑引入更丰富的环境特征; 混沌映射自适

应机制需要完善, 以提高算法对不同问题规模的适应

性; 未来研究可从深度强化学习、自适应参数控制等

方向深入, 为复杂生产调度问题提供更高效的解决方案.
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