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Abstract: In the medical field, retrieval-augmented generation (RAG) has been proposed to mitigate hallucinations in
large language model (LLM) and enhance the interpretability and controllability. However, existing techniques are faced
with poor recall of low-frequency entities and difficulties in processing ambiguous, verbose, or polysemous queries. To
this end, this study proposes an iterative hybrid retrieval-augmented generation (IHRAG) approach for LLM to improve
the intention parsing ability of complex queries and enhance the model’s performance in knowledge mining capabilities
for making LLMs generate more accurate responses. IHRAG employs a dynamic routing mechanism to synergistically
leverage the semantic generalization capability of vector retrieval andthe structured reasoning capacity of knowledge
graphs. By combining a medical ontology-driven query decomposition algorithm, complex clinical questionsare broken

down into retrievable atomic sub-questions. Furthermore, a knowledge gap-aware neuro-symbolic expansion model and a
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“retrieve-verify-iterate” closed-loop optimization mechanism are introduced to establish a progressive discovery process
that advances from surface-level information extraction to deep knowledge mining. Experiments demonstrate that IHRAG
significantly enhances the performance of base models of various scales such as Qwen and DeepSeek, achieving an
improvement in the accuracy of up to 11.12 percentage points and a 17% increase in the high-quality response rate.

Key words: large language model (LLM); retrieval-augmented generation (RAG); knowledge graph (KG); hybrid

retrieval; medical Q&A
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LLM-only 72.95 80.20 85.78 72.90 80.08 85.92 72.12 80.68 85.86
KG-RAG 73.06 72.87 84.64 75.34 72.64 85.85 74.43 76.28 85.94
Qwen-Turbo Vector-RAG 71.75 69.42 76.64 73.91 74.30 79.50 75.86 82.92 87.98
HybridRAG 81.10 81.64 88.41 82.49 86.42 89.96 80.20 83.63 88.76
IHRAG 82.31 84.56 90.65 84.67 86.39 92.14 81.65 83.78 89.20
LLM-only 82.97 89.43 88.21 82.23 89.30 90.12 83.29 88.94 87.64
KG-RAG 83.26 84.96 88.74 84.65 84.21 89.91 83.88 87.70 87.98
Vector-RAG 83.35 87.31 89.35 84.15 84.75 90.17 82.92 88.49 89.29
DeepSeek-V3 .
HybridRAG 86.75 90.54 90.12 86.87 90.37 92.02 86.18 91.20 92.21
GraphRAG 86.92 90.24 91.07 87.23 90.18 92.54 85.97 90.32 91.83
IHRAG 87.73 91.16 91.73 87.98 90.42 92.95 86.51 90.25 92.31
LLM-only 80.29 88.78 87.08 80.88 88.18 87.01 82.79 87.84 86.15
KG-RAG 82.29 84.18 87.20 83.05 85.82 89.59 82.65 86.28 86.29
Qwen3-235B Vector-RAG 81.53 85.04 87.70 83.36 85.43 89.72 82.68 85.95 85.71
HybridRAG 84.82 89.06 89.08 85.50 90.18 91.00 84.57 89.91 89.95
IHRAG 85.68 89.67 90.68 86.20 89.59 92.06 85.02 89.79 90.52

T R A R IR AR

IHRAG J5 VA 1E BT A L i A A0 R4 908 4 1 34 e B
HEERS GE D). ZHIEERLE S ERIIT R
H: Qwen2.5-1.5B #ERf LT+ 2 74.52%, Qwen-Turbo
FHE IR 92.14%, DeepSeek-V3 Al Qwen3-235B % I
FebRATH %G, X £ W IHRAG 1833 325 1R S WL 2
R T R PR 1 5 R A HE B S ) A R A L2 1

6

ey, S0 T AR 10 = S fiff PR R [ 2 e A
RAG AN MERIGRTF BOR HN 2. Qwen2.5-
1.5B %4 THRAG 145 )5, #ERfi R % LLM-only 328 $2 7+
I 20 AN 43 s, L BB IE T 0 4 KB 1 R 2R UK
XS KA U DeepSeek-V3, THRAG 475 v K H AL £
PEEEAH SMEIRTEE 92.95%, SRAIE T Zh BRI AR K
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AT fH 448 25 200

ANTF] RAG J7iZh Bm AR R I B B 22 57 KG-
RAG TERAA BE 4ERE LT Vector-RAG, S B4k F 1k A1
YU IR LA ME S HE L 35 11 Vector-RAG 7EFF X
15 B3 N M. IHRAG 7 DeepSeek-V3 18 & 5di 4
S 87.73% HERGTEA 91.73% AHSME, % HybridRAG
FETHIT 1 ANE 0 a5, R B B A& PSR T A TR
A .

NERNIGAIE THRAG HEZE Hh &A% O H 1, A
WA T RARIERISEL /7 % 1F DeepSeek-V3 %
Tl A5 B RO AL BB 4 1, 0 G OB AR B DLVE Al 3
X R GERE I RE I, LG 45 RN 2 Fos. SEIRSE R R
B, SIS EEH . APRAL AR AL A B & B A A X 3 A
WO R G PE B35 A T 3 RE . SR R B AEAE B
[Fi) 38 5 KN, 568 THRAG HEZLE i A5 H AT HLIAC & 5281
T E A EITERER L. HAkLE Rl 3 B,

K2 IHELSEIR S5 R

Tk Acc Com Rel
THRAG 87.56 90.35 90.63
FIREh A 86.45 89.57 89.23
FRRAARAL AR 85.92 88.25 88.56
F5 N A AR 86.65 88.59 89.21
94
92
= 90
S 88
2 86
= 84
-~ 82
80
78
Accuracy Completeness Relevance
ELLM-only mKG-RAG @ Vector-RAG

@ HybridRAG @ GraphRAG =IHRAG
(a) IR & B HEDeepSeck-V3 N Hudxt

Accuracy Completeness Relevance

wLLM-only mKG-RAG  uVector-RAG
= HybridRAG @ GraphRAG mIHRAG

(b) AJFHdEHEDeepSeek-V3 T it xf
3 DeepSeek-V3 J:fili T % s 42 £ ) L
TE B B & 7 B J7 1 (W 4, 1555/ T 60 %
ATk, 4353 1E 60-80 BN RAF, 155 KT 80 N
75), IHRAG {225 18+ /5 i 2 [0 2 LU Al Qwen-Turbo
Hl DeepSeek-V3 L F5 I % & bL 73 5l 15 55.4% Al

56.0%, FH LLM-only ZE2E52 0 17 AN 43 . [FIR,
JITH RAG T 153 RGVERRAR A S 125 5 b, Horp
IHRAG 7 HybridRAG %:4ifi b S2IAAME 25, 30 0F 1
BNAS VLML FI R B A AR AR .

{HAFEE K /&, DeepSeek-V3 £ THRAG M5 J5 1A
3 56.0% HIR T I, R B RHEIRE ) 5
AT RN R RN, IHRAG ) sE 8l = %
M 1) B F i N RAF IR B T57; 2) skl
IR I, 3) FEAN ARSI A F 35342 1 o & 53 A

" RF w B AR

LLM-only 39.7%
KG-RAG 40.2%
Vector-RAG 40.7%
HybridRAG 30.3%
IHRAG 26.3%

(a) Qwen-Turbo B - 43 B (& LL 1% 5L

w AT R A%

LLM-only 53.6% 5.3%
KG-RAG 48.9% 8.7%
Vector-RAG 44.6% 13.2%
HybridRAG 39.9% 7.8Y%
IHRAG 35.6% 8.4%)

(b) DeepSeek- V35 7 %43 B i LA it
Bl 4 SRR [R5 5 i 5 G A i

4 e

A AR AR TR A R R R AR HE 4
(IHRAG) B3t R 408 A iR B i 755 HEFE 5 1) A
RIE 2 AR ST, R PURIM AR H B R L ER S
PR TR . SEIGR B, 2T DeepSeek-V3 [
IHRAG BRTERA Hidl e BRI R (MR 87.98%,
SEHNE 90.42%, FIEME 92.95%), B ATk T IR T
1.11-5.75 AN E o o5 AEAE RN, 76 72 Rig 5t
™ (Qwen2.5-1.5B M EERlAEAY), 1% HE 400 i kAL AL
BLEI ST 4.01% FIER BT, B0 UE T BIER B A 25
EIEME.

TEBL VR B2 T, 88 1ok A R Jar o A A B2 2
ST I R B 3 i R ) S BhAS T R AL SE I
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BRSR AL BB B Oy XA
S AL B T B

def document_preprocessing(raw_documents):

# R TRAL HAL R

# 3N SRR SR

# it SRR BE

processed_docs =[]

for doc in raw_documents:

# 1 IEBIUARAE B AFELES

cleaned_doc = remove_redundant_info(doc)

#2. RSB

segments = text_segmentation(cleaned_ doc)

# 3. SR AL B

structured_segments = add_structure_metadata(segments)
processed_docs.extend(structured_segments) return processed_docs
def testset_generation(text_segments):

# MR AL B F T SO B A J ) 2 0

# i\ OB

# it (R, B 5 WA1R

qa_pairs =[]

for segment in text_segments:

# A LLM A2 A 0% o)

questions = generate_questions_from_text(segment)
LECAP PR IESES

for question in questions:

answer = extract_answer_from_text(question, segment)
qa_pairs.append((question, answer))

return qa_pairs

ik A2, SR M B

def dynamic_retrieval router(query, knowledge state):

# A EE R R I U 2 e R R A

complexity = compute _complexity(query) # J& T SRR RELE T
IR

if complexity < COMPLEXITY_THRESHOLD: # fij 5. ] £
return dense_retrieval(query) # ELZ [ B ER

else: # = Z%n] i

#IREIR: [FEHEIR

sub_questions = ontology decomposition(query) # 7] B fiF 14

kg docs = knowledge graph_retrieval(sub_questions)
vector_docs = dense_retrieval(query)

# & PRl AL E

alpha = compute_adaptive_weight(query, kg docs, vector_docs)
return alpha * vector_docs + (1 — alpha) * kg_docs

5% A3 AREALAER

def ontology decomposition(query):

# 2T R A 1] A

entities = extract_entities(query) # SRR

sub_questions = []

for entity in entities:

properties = get_entity properties(entity.type) # KHU S /4 J& 14
for prop in properties[:3]: # &AL 3 AN B

# AT ) SRR RS

sub_q = generate_subquestion(entity, prop)

sub_questions.append(sub_q)

return sub_questions[:5] # SLIRAE K 5 AT 1) 7

9 A4, FIARER R

def knowledge gap expansion(knowledge state):

# AR E ORI S A WY R

gap_concepts = detect_knowledge gaps(knowledge state) # &l A 7
FH

expansion_queries = []

for concept in gap_concepts:

# LT BT A Y R A

new_queries = generate_expansion_queries (concept, knowledge state)
expansion_queries.extend(new_queries)

return expansion_queries
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Hik A5, BEIVHE TR

def automated_evaluation(question, reference, response):

# 3T DeepSeek-R1 HI H 3Tl

prompt = construct_eval prompt(question, reference, response)
eval_result = llm_evaluate(prompt) # 1 F 1At 45 77

return parse_evaluation_scores(eval_result) # AT AH I/ 52 B 1/ HER
ERd

def batch_evaluation(input_file, output_file):

# LR VTG AL 3

df =load_data(input_file)

for index, row in df.iterrows():

# BV IR AP T

scores = automated_evaluation (row['question'], row['answer'], row
['response'])

df.at[index, 'scores'] = scores

ifindex % 5 == 0: # & 5 Z{RHF—IK

10

save_progress(df, output_file)

# RGBS

COMPLEXITY_THRESHOLD = 5 # & 44 Ji [ &
SUFFICIENCY THRESHOLD = 0.7 # & & 785 M B
INFORMATION GAP THRESHOLD = 0.2 # {5 2.5k I B &

# RS
VECTOR _TOP K =5 # [ & iR F 4
KG_RELATION_DEPTH = 3 # iR Bl < RIXE

# PS5
HUMAN_REVIEWERS =2 # A\ T3 &
CONSISTENCY THRESHOLD = 0.7 # 8 — S B 1E

(BT T 5K HE)
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