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T-SeGAT: Molecular Property and CPI Prediction Model for Imbalanced Data
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Abstract: Molecular property prediction and compound-protein interaction (CPI) prediction are key steps in drug
discovery. However, traditional graph convolutional network (GCN) are limited by local receptive fields and cannot fully
capture the complexity of chemical structures, dynamic changes of molecular conformation, and long-range electronic
interactions, which causes bottlenecks to the prediction performance. To this end, this study proposes a deep learning
model, T-SeGAT, designed to improve the accuracy and generalization ability of molecular property and CPI prediction.
T-SeGAT integrates the ESM-2 protein language model, ChemBERTa molecular language model, and a graph neural
network based on graph attention network (GAT) and Set2Set, thereby enabling multi-level feature extraction and fusion

from sequence to structure. Meanwhile, to handle the imbalance of experimental data, the model introduces weighted
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random sampling, balanced/focal/adaptive loss functions, and a dynamic threshold search mechanism at the levels of data
loading, loss calculation, and prediction decision-making. Furthermore, it combines an AUC difference-based overfitting
suppression method, early stopping strategy, and learning rate scheduling to enhance training stability and generalization
ability. Experiments are conducted on the BACE, P53, and hERG datasets for molecular property prediction, and on the
Human and C. elegans datasets for CPI prediction, with stratified five-fold cross-validation adopted for performance
evaluation. The results show that T-SeGAT consistently outperforms existing baseline models on all datasets. Among
them, on the BACE and hERG datasets, the AUC and precision improved by 0.022, 0.010 and 0.004, 0.022 respectively
compared with the second-best model, while on the Human dataset, precision increases by 0.013. In conclusion, T-SeGAT
demonstrates clear advantages in accuracy, stability, and practicality, providing powerful support for molecular property
and CPI prediction in drug discovery.

Key words: graph neural network (GNN); molecular property prediction; compound-protein interaction (CPI); imba-

lanced data learning; multi-head attention (MHA); deep learning
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cient, MCC) LA S ¥ #1 % - 4 [A] % (precision-recall,
PR) HIZE. " R VR AR o o 5% TR A

TP+TN
Accuracy = (19)
TP+FP+TN+FN
TP
Precision = )
recision TP+FP (20)
TP
Recall = (21)
TP+FN
TP
TPR = (22)
TP+FN
FP
FPR = (23)
FP+TN

TPXTN - FPxXFN

~ N(TP+FP) TP+ FN)(TN + FP)(TN + FN)
24)

Horp, TP RSN IE . TN IERIFEASL, TN & 5
SRR TR S SRR A S, FP AT FN 4359 9 5K
A TN TR R A DL R LS TR L TR B
FEAEL. ROC 42 LMEFHZ FPR 4 x Bl HEBHZ
TPR N y kg ¥ i 2, AUC st 2& ROC ik R T
FUH, BT 1 Ron o K1k RE kLT

— MM, Accuracy & fx BB =B PR, #5)1Z
F T & FiAE S5 b 51 o0 2, J0H R 5 WL 3k
SEATEYE SR, Precision 1 Recall B 5 7 E IEFEARS, At
HAE RGP, ROC £ F1 PR #h 2k 11 515 31
1) AUC 1 AUPR (area under precision-recall curve)
s AN R B 2R G Y B 1867, Matthews FHK &R
B (MCC) 457 TP. TN. FP. FNiX 4 Tji48hx, %t
AN H s B AT SRR E P PERE.

mMcc

2 LE SR
2.1 FTRA%RSE

N T AL A SC7 3, BAMEH T 24 HdE 4,
{135 BACE. P53, hERG. Human. C. elegans. & 5
FEARSI TR BRSNS B b BACE. P53
A1 hERG IX 3 a4 H 120 7 PR FIAE 55, Human
M1 C. elegans H T & 4- 85 H UM BAE I PN 55

T TP FAE S5+, A5 1 BAR 3 AN Edia k.

BACE %45k B NCBI PubChem BioAssay
(Assay AID 411279), 375 %1 1500 MEA YN B-73 A 1
(BACE- 1) ] 3 1 %, F T VP45 A4 4 BACE-1
O 25 SR P SN A2 R

P53 B4R 5k B TARC #1 NCI ] TP53 S48 %L
e, B 40 2.5-3.4 T3 5 AE N MR s i 22 vh oW 4%
B[ P53 RAZ, )72 F T8 H R Dy RE OB AH W 9T

hERG #4184 7 i A B SR 36 45 H (PubChem
Assay AID 588834, ChEMBL. Zenodo), 3t JL T &
JUi MBI 1Cso RN AT AR 2, S 2592t (O
JUEEE ) TR0 £ B AR v R 4.

£ CPI TRIMESS i, it — 30 R T A v 8
£ Human""' 5 C. elegans”* ¥4t 4}y A JF 1) CPI JE
4, HAREARYE Liu 2 NPYE i vl 45 i
MEZEME, JRAR R IESUREAR LGN 101, B R&ERH
DrugBank 5 Matador 25 % I, J5 #f Tsubaki 25 NP5
F T 2 Wi B 22 Sk e, BB Fh CPT (1)
HEX IR,

Human $48 4200 7 A\ 36 R4 A0 O $dis e, i 7
NREREGEE, BFEEFFH. e, RAEZHH
B, &G B A AU B R,

C. elegans &4 5 60 & 75 W o A 42 e () ZE R 4
g B RS, AW AL Y S K
The Pt B B R,

x5 BIREFMER

MR B A i B 9] P
BACE — 1507 691 822
P53 — 7460 529 6968
hERG — 9804 4668 5136
Human 2001 1767 3364 3364
C. elegans 1876 2111 3893 3893
22 E&EFE

N T VG AR K PERE, T-SeGAT K4 il 5 £ Fh
G INLER = 2 JELL R 2N BT AT R R, &
TR E 2 ST BRI TAE AT LR J5i43 R K a4l
(KNN)PL BEHLA#R (RF)® BREEHR O, GONIL
MPNN!"? MG-S'*). CPI-GNNP®,
CPI*?, DeepCPI™!, GraphCPI™*".

2.3 LIGLER
23.1 S FPER TGS VPG

% 6 JE/R T T-SeGAT FI3E 1t J7 9%/ BACE i

£ EZE R, ATLLE Y T-SeGAT 7F BACE ##E 4 1

Transformer-
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#J AUC. Precision. Recall. MCC ¥&¥543-5]4 0.887.
0.789. 0.834. 0.664. 7E 6 NMIEMER 1, T-SeGAT 1E
AUC 1845 FHUR 7RI 45 3, BEEESRTHE Precision.
Recall. MCC iX 3 AMhs EEUS T B UFisn, & 7
EAR_ T, 7 Precision. Recall. MCC X 3 Matr B2y
M T oAt L AE AR R R P Bl AR T B PR BT 35K
S, X B AR ASE R R B T B PR A AR U AH L B A A
YIRS S e
# 6 BACE R tEss i

232 AEY-EE T ELE A TN AG ST A
% 9 JE/R T T-SeGAT Mk J7¥:7E Human $0#5
SR, SRR, FIFTA LM, T-SeGAT
1E AUC. Precision. MCC ¥J5&H = /KHE, Foh Precision
R Z 55 0.013, B AUC F1 MCC 54l
TREHYBLARET, (H 2 MU AT BE K, T-SeGAT #E Human
HARAE L BUS HHERES T SE 2R A,
# 9 Human FREES R

Jrik AUC Precision Recall McC

KNN  0.815£0.017 0.748£0.030 0.784+0.024 0.563+0.048
RF  0.787+0.043 0.746+0.029 0.784=£0.011 0.589+0.084
FAEESRTF  0.881£0.026  0.830+0.044 0.859+0.034 0.706:0.054
GCN  0.865£0.012 0.777+0.030 0.810£0.045 0.617+0.125
MPNN  0.793£0.031 0.720£0.015 0.760+0.030 0.620+0.068
MG-S  0.865£0.023 0.779+0.042 0.882+0.026 0.621%0.057
AF7EE 0.887+0.006 0.789+0.052 0.834+0.036  0.644+0.034

# 7R T T-SeGAT FIFEHE T iLAE P53 Hdi 46
RIS, T-SeGAT 1E P53 #i¥E 5 1E Precision FH
BRI R, Precision LWIRATEETL$E & TiL 1%, &
AUC. Recall. MCC iX 3 MEFR5 IR AR A A1 5 55 AR
24, I H A FR bR E#R T AR B A, IX B A7
VEAE P53 HUilR AR B[R] oAl S k77 A L R HL e 4 7.

7 P53 HIRELR

Fii AUC Precision Recall McC

KNN 0.927+0.009 0.887+0.012 0.876+0.011 0.758+0.024

RF 0.836+0.019 0.723+0.019 0.800+0.009 0.495+0.046
AT 0.936+0.010 0.880+0.014 0.882+0.018 0.761+0.019

GCN 0.968+0.005 0.914+0.011 0.905+0.007 0.798+0.045
MPNN 0.950+0.012 0.883+0.011 0.879+0.016 0.807+0.037
MG-S 0.977+0.003 0.933+0.005 0.932+0.015 0.866+0..038

CPI-GNN 0.970 0918 0.923 0.825
TransformerCPI 0.973+0.002 0.916+0.006 0.925+0.006 0.869

DeepCPI 0.955 — — —

GraphCPI 0.946 — — —

VVIRES 0.977+£0.002 0.946+0.006 0.917+0.001 0.866+0.009

Jrik AUC Precision Recall McC

KNN  0.953£0.006 0.837£0.014 0.990+0.005 0.815+0.027
RF  0.789+0.012 0.6904£0.010 0.760£0.027 0677+0.028
FAEESRTE  0.950£0.010 0.863+0.010 0.953+0.012 0.813+0.025
GCN  0.955£0.004 0.891£0.010 0.919+0.005 0.7800.105
MPNN  0.941+0.007 0.870£0.011 0.941+0.011 0.826=0.090
MG-S  0.989+0.003 0.943£0.007 0.993+£0.002 0.925+0.044
AF7EE 0.988+£0.007 0.950£0.015 0.976+0.017 0.921+0.030

% 10 e7n T T-SeGAT FE#E /5 %7 C. elegans
IR ER4E R, T LUE H T-SeGAT 1E C. elegans %X
Wit ) AUC. Precision Recall. MCC $8%5:% 5
90.982. 0.960. 0.932. 0.890. T-SeGAT JaEfm £,
AIREE KA C. elegans B2 £¥E =8/, T HAHEK
Fr28 SRR, ST IR AT AIDA 4 25 e DL 58 4 42, 52
e | REAAYERE. BIE W1k, T-SeGAT 7E C. elegans £ 43
£ ERIYEREAT) S AR AR A FEACRE P HL v T R AL 1Y
SEHKF.

# 10 C. elegans HiE 45 R

% 8 JE/R T T-SeGAT MLk /7745 7E hERG B4
% FI4E R, T-SeGAT 1£ AUC Fil Precision I 33HU13
TG R, AE Recall. MCC $6%5 B AT I LA
SRR SR, T-SeGAT £ hERG ¥4 - HUS
T et e
# 8 hERG HyEdis:

J7i%: AUC Precision Recall mcc
KNN 0.808+0.016 0.735+0.014 0.734+0.008 0.466+0.024
RF 0.707+0.012  0.621+0.007 0.710+0.020 0.429+0.022
BEEEREF 0.793+0.014  0.716+0.008 0.728+0.012  0.434+0.015
GCN 0.843+0.019 0.742+0.019 0.744+0.014 0.585+0.045
MPNN  0.840+0.023 0.770+0.016 0.771+0.019 0.578+0.060
MG-S  0.845+0.006 0.768+0.007 0.755+0.007 0.547+0.034
AFyE 0.849+0.008 0.768+0.029 0.743+£0.057 0.540+0.025

7 AUC Precision Recall MccC
KNN 0.953+0.008 0.911+0.010 0.911+0.021 0.829+0.018
RF 0.888+0.012 0.863+0.019 0.700+0.025 0.628+0.025
o B T 0.967+£0.010 0.941+0004 0.919+0.013 0.862+0.010
GCN 0.985+0.003 0.955+0.008 0.946+0.004 0.881+0.033

MPNN 0.976+0.007 0.929+0.010 0.930+0.015 0.909+0.044
MG-S 0.989+0.002 0.961+0.004 0.963+0.003 0.918+0.027

CPI-GNN 0.978 0.938 0.929 0.816
TransformerCPI 0.988+0.002 0.952+0.006 0.953+0.005 0.906
DeepCPI 0.943 — — —

V. NYTRCS 0.982+0.002 0.960+0.013 0.932+0.019 0.890+0.014

25 LPTIR, T-SeGAT £ 73111 53 FUI 75 ol Jre 3L 17
e PERE, JF AT DARFPER R L ar (0 45 1. 48 CPI FililAE:
%51, T-SeGAT #E Human ¥4 4 _EIRAS T B fE1ERE,
et R L, RS A A e iR bn LU i AR
51, SR A R AL 2 d AL HERE AR b HEAE AT 51, R WA
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CPI TR At B A 1R 55 1 5% 4 . A0 T AR S ket T-
SeGAT HA Bz (&t kRl b, &
TURBE 2 I 7V B TR T L 5 I B 7, XK
HFR i 2 S AR T AR Gub L s 2 2] 7 v R i B i ik oy 1
PR T AT CPT T 1] 73
2.4 jHRRSCIS

AATAE P53 B HE 4 A Human 303 55 _EE47 4 A
SEH, RIT T-SeGAT BEAY rp A [R] B HOGH AR 4L 4 4 14 R
MRS, ik, AT E T 4 4 T-SeGAT 171 AliH Y :
1) T-SeGAT-A 8!, A | ESM-2 Tl ZRifk N, 2 E
F7 51 I BE AL 75 AR5, SRV 2 A 4migYEH. 2) T-Se-
GAT-B #7 B {# ] ChemBERTa, 43 13 51 B 3%

[ AUC [ Precision [ Recall [ 1MCC

1.0 +
0.8
m
& 0.6 -
gg
04
02 F
T-SeGAT-  T-SeGAT- T-SeGAT- T-SeGAT- T-ScGAT_
A B C D
(a) PS3FEIR P
- AUC - Precision —Recall —~—MCC
1.00

0.98 |
096 | 7D>—=/:
0.94 /.\/
0.92 |
090 | /\/
0.88 |

0.86

fEbRME

T-SeGAT-  T-SeGAT- T-SeGAT- T-SeGAT-  T-SeGAT

A B C D
(c) PS34TLEA

2 0 [r) B BE AL A, 527 1 Zhd TR, 3) T-Se-
GAT-C 1A, FH fi 514 SR sRAAG A GAT+Set2Set,
Z L2 15 Set2Set [ 25, 4) T-SeGAT-D FE%Y,
5 MLP & 4ok 2 261, PRl 2 5 AR 2R s,
A — IR GRS A S5 R — s o, HoR s
A SRR B A,

2 /& T-SeGAT MR/ P53 #5425 Human %
Ptk ERGHALSRIREE . (). (b) N 4 TP TR AUC,
Precision. Recall 5 MCC WIFIRTE, FHT RBaRAFH
TH R B R PR XA Z R (o) (d) A5 (a). (b) #H
[ 54 P T Sk B I, FH T 9%t % 48 e B 9 i 14 L AR
TR A TEbrE, UETEE Y 0-1.

[ AUC [ Precision [ Recall [ ]MCC

1.0 |
0.8 -
% 0.6
5=
0.4
0.2 |
T-SeGAT-  T-SeGAT- T-SeGAT- T-SeGAT-  T-SeGAT
A B ¢ D
(b) HumanFE4R &
- AUC = Precision —Recall —~MCC
0.98 -
0.96 -
0.94 -
0.92 -
2 o090t
ym 088
0.86
0.84 -
0.82 F
0.80 L L L L L
T-SeGAT-  T-SeGAT- T-SeGAT- T-SeGAT-  T-SeGAT
A B [¢ D
(d) Human#1£& &

2 T-SeGAT FEEIZE P53 $¥E &A1 Human FHE 55 _E 3 b Sz ad 45 51

B 2 A LG H, 78 P53 #4421 Human $0ds
£ 1, 4 AT AL 1) R I B A KB [R] A R 3 O
7 ESM-2 fHL ) T-SeGAT-A HAILE 4 AN fih 52 56 15
R R RE R I 22, R ESM-2 BEHLXT T-SeGAT
R () TRk B K T-SeGAT-B A% b T-SeGAT 7Y
WAARNIVERES S, LR Recall FEFF, Ui BAIHA il
PS4y TN RE ) [FIRE B 22 T-SeGAT-C BLAYTE
4 A Fabr A AR B R B, RN A& bk
BEHLGT T H2 i A5 2 1) P i 1R B 2 T-SeGAT-D %Y

XFE T-SeGAT 2 2Y [AIFE A A R A2 FE 1 R %, X R HH
MLP (1 E 2 M e 4 5 A2 Ak & 0 AH EAE R 5 X
A EEMAL Z5 ERTIR, BB T T-SeGAT i
RUARAT 25 2 32 K A I HR 4536 A ] SR /R .
2.5 BfEl. TEERE. NEHE

FEIS A SR B R SR . INGRAE ik #e A
AR MG-S JEAT ST EL, N T AR L, X AN 77
BATYILE Linux BB AT LK, FIH—KHS5 N
NVIDIA RTX 3090 [ GPU KA A Il Zrid F2. 45 5
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11 Fis.
R LIR, T-SeGAT 1ERT (A1 B 73 (B 5 4= %
5N GRa80 R J7 T 35 0 AR T o6 B A MG-S. 156, A
SYNGRIT (B KE, AR ITEEITA A% B3 KR 4is: 45
BACE 1 P53 %48 4 L Lk 7 il siik 15.8 £5 A0
7.94 £, M 7E Human. C. elegans 5 hERG i #i 4 -
TREFTE 1.5-3 5 2 [0], PRI 5 50 A i AR e AL 24
FLUR, FE ARV R BE T 1T, AT A7 5 A, 54
11

ByEERIEETEE N 0.9-2.3 GB, IH4&KT MG-S
1.4-3.1 GB, [F]I St 5 /)N, 3 BB A 4544 5 n 4%
B IR, EGRERYE B, ATV B epoch “F-3#E
I 87 3h A, LT 7 OSSR TR 3 kD, X A AR B A
PIGRm ] A AT IS, 22 LATR, T-SeGAT 7E A A
HHE 5 AT 55 AU 2 R O < o8 Rl 8. A R
15 ERIZRET R B Z5A 5, S0 T PERe 5 3 IR
FEZ A1) w5 BT A, AR B B s ) S PR S T Je 12k

B IE) ., SIS R R4 RN

. %yﬁﬁ% i} (h) 1 He (MG-S/ A7) M%faiﬁ (GB) %ﬁ%%lﬁ (s/epoch) ‘Lfézﬁﬁz%‘(k
Y NIIREN MG-S ATj MG-S ATj MG-S VNI MG-S
Human 6.7 10.2 1.52x 2.1 2.8 28.4 315 42 65
C. elegans 9.1 26.7 2.93x% 23 3.1 31.0 39.8 53 88
BACE 0.33 5.2 15.8% 0.9 1.4 12.5 21.0 10 42
hERG 1.73 4.67 2.70% 1.4 2.0 25.8 30.5 24 55
P53 1.7 13.5 7.94% 13 22 27.0 36.5 22 74
3 458 (2025-04-02).

ASCHR ST — i 1) AP H i ) 2 TR B S AL
AV U ELAE F PN T-SeGAT. i Y fil &
ESM-2 H (1% 5 #%. ChemBERTa 7 71& S AL 5
GAT+Set2Set I /2%, SEI | 541 5 45 K REAE 1Y
TG AL AE X B AN e I, AR 5] ISR
FEL 2Pk B B DA K B3 BB S, A R T 1 b
HERMEARIIR G T, R 456 25T AUC 2 R Hid 4
HHALE . FAE ) R, BE R ISR
Fadg e 5z Ak

7£ BACE. P53. hERG. Human f C. elegans X
5 s LR SEIR 45 R R W, T-SeGAT f£ AUC,
Precision~ Recall F1 MCC “54abr LT L FE 20
B, P B AR PR RS e . T A SE IR — 2P IS
E T H B S ST DR, R R AR A
AR 573 R B AE B AR I R AR T T 38 R 4R T OC AR
F. [, T-SeGAT fEIS A A4 . =S [A A4 5 I 2k
RO T7 TR I WA, Sl T B Re S RE
THFEZIAI ) R AT-F 4.

Zi L PTR, T-SeGAT AMYUAE > TPEBTFIN 5 CPI
TNAT 55 S 70 SR 45 2R, o8 B AR B
I 1 2 BEAS TR L 2 S 3R A 1 WT AT BB 7 R 5 2K
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S 30k
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%+ %% P i . https://news.yaozh.com/archive/45244 html.
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