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摘　要: 针对新型网络攻击初始阶段样本稀缺导致入侵检测模型泛化能力不足、检测效果差等问题, 本文提出一种

基于扩散模型的小样本入侵检测方法. 该方法在数据增强层面构建噪声感知的条件扩散模型, 采用余弦噪声调度平

衡生成效率与样本质量, 并通过残差连接增强特征传播稳定性, 从而提升合成流量数据的分布保真度. 在特征度量

层面, 设计动态原型网络结构, 利用多头注意力优化类原型表示, 缓解小样本特征稀疏问题; 同时采用交叉熵损失与

正交正则项的联合优化策略, 增强类内聚合与类间区分度. 在两个公开数据集上的实验结果表明, 该模型在小样本

场景下的准确率和泛化能力均优于其他检测方法, 为小样本入侵检测提供了新的解决思路.
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Abstract: To address the insufficient generalization and degraded detection performance in intrusion detection models
caused by scarce samples during the early stages of novel network attacks, this study proposes a few-shot intrusion
detection method based on diffusion models. At the data augmentation level, the proposed method introduces a noise-
aware conditional diffusion model that employs cosine noise scheduling to balance generation efficiency and sample
fidelity, while residual connections are incorporated to enhance feature propagation stability and improve the distribution
fidelity of synthesized traffic data. At the feature metric level, a dynamic prototype network is designed, leveraging multi-
head attention to optimize class prototype representations and mitigate feature sparsity in few-shot scenarios.
Simultaneously, a joint optimization strategy combining cross-entropy loss with an orthogonal regularization term is
adopted to enhance intra-class compactness and increase inter-class separability. Experimental results on two public
datasets demonstrate that the proposed model outperforms other detection methods in terms of accuracy and
generalization capability under few-shot scenarios, providing a novel solution approach for few-shot intrusion detection.
Key words: intrusion detection; few-shot detection; diffusion model; metric learning

随着全球数字化进程的加速, 网络安全威胁日益

严峻, 入侵行为呈现出多样化趋势. 作为网络安全防御

的核心环节, 入侵检测系统 (intrusion detection system,

IDS) 能通过分析网络流量或系统行为及时发现潜在的

恶意活动. 近年来, 深度学习因其强大的特征提取能力

成为入侵检测研究的热点. 基于深度学习的入侵检测
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方法需要依赖大量的标注样本来训练检测模型, 以准

确识别已知攻击. 然而, 由于新型攻击不断出现, 难以

收集足够的样本进行训练, 导致深度学习模型在面对

新的和少见的威胁时表现不佳[1]. 具体来说, 目前基于

深度学习的入侵检测方法在小样本场景下容易过拟合.
在此背景下, 小样本入侵检测逐渐成为研究热点, 已有

研究主要沿几个方向展开探索: 一是元学习, 通过任务

式训练模拟测试阶段的小样本场景让模型学会学习;
二是度量学习, 通过优化特征的嵌入空间, 提升类别区

分度; 三是数据增强, 合成多样化的攻击样本以缓解数

据稀缺带来的性能瓶颈. 尽管已有研究取得一定进展,
但仍面临多重挑战: 其一, 特征表达不充分, 有限样本

难以支撑模型学习具有强判别力的特征表示; 其二, 动
态适应能力弱, 传统模型采取静态训练范式, 难以适应

持续变化的网络威胁环境.
针对上述挑战, 本文提出了一种结合条件扩散模

型与动态原型网络的入侵检测方法 CD-DPN (conditional
diffusion dynamic prototype network), 实现在小样本场

景下提升对攻击的识别效果. 该方法研究基于残差连

接的条件扩散模型, 实现符合真实流量分布的高质量

样本生成, 有效缓解样本稀缺问题; 采用基于任务驱动

的学习策略, 使模型能够快速适应新任务, 降低对大规

模标注样本的依赖; 设计动态原型网络, 融合多头注意

力机制优化特征嵌入空间, 突出关键特征, 提升检测效果.
综上所述, 本文的贡献如下.
1) 提出了一种基于残差连接的条件扩散模型, 将

其应用于小样本入侵检测, 通过噪声调度策略和条件

生成机制实现高质量攻击样本合成, 有效缓解小样本

数据稀缺问题.
2) 构建动态原型网络, 采用注意力驱动的特征加

权策略与原型正交化空间约束, 提升小样本条件下的

特征表示质量和类别区分能力.

 1   相关工作

入侵检测系统经历了从基于规则匹配、特征工程

到引入机器学习与深度学习的演进. 早期方法依赖于

人工制定的规则或签名库, 难以应对动态变化的复杂

攻击. 为突破规则系统的局限, 研究者开始引入机器学

习方法, 如支持向量机[2]、随机森林[3]、K 近邻[4]等对

流量特征进行建模, 实现初步的自动化检测.
近年来, 深度学习因其强大的特征提取能力在入

侵检测中表现出色. Laghrissi 等人[5]对时间序列特征

进行建模, 实现了基于长短期记忆 (long short-term
memory, LSTM) 的 IDS. Wei等人[6]引入注意力机制来

提升 LSTM 对关键特征的聚焦能力. Ho 等人[7]采用卷

积神经网络 (convolutional neural network, CNN) 有效

提取网络流量的空间特征. 周璨等人[8]结合 CNN 和门

控循环单元, 通过轻量级模型, 缩短了模型的攻击检测

时间, 提高了模型的攻击检测性能. 池彬等人[9]改进自

编码器中的 LSTM 并与流特征结合, 增强了复杂攻击

模式的识别效果. 然而, 这些模型通常依赖大量标注数

据, 在面对新型攻击时往往表现出较低的准确率, 难以

有效学习最新攻击模式.
为突破这一限制, 小样本学习方法近年来逐渐被

引入入侵检测任务. 元学习通过构建任务驱动的学习

范式, 提升模型在有限样本条件下的快速适应能力.
Xu 等人[10]首次将元学习框架用于入侵检测, 设计了

FC-Net 网络, 实现了小样本流量分类. Lu 等人[11]首次

将模型无关元学习 (model agnostic meta learning,
MAML) 与 CNN 结合应用于物联网入侵检测, 通过少

量训练调整模型的参数, 实现快速适应. Hu 等人[12]构

建基于隐私保护的小样本流量检测框架 PFTD, 结合个

性化模型与全局共享模型, 在边缘设备上保持检测效

能. 尽管 MAML 展现了快速适应的能力, 但对初始化

敏感且复杂度较高. 相比之下, 基于度量的小样本学习

方法如孪生网络[13]、原型网络[14]等, 通过学习任务间

的相似性度量进行分类, 计算效率更高. Hindy 等人[15]

利用孪生网络实现基于相似性的流量分类. Yang 等

人[16]提出特征提取模块和距离度量模块协同工作的

FS-IDS 框架, 在未知攻击存在的情况下仍能保持较高

的准确率. 林同灿等人[17]通过内部和外部对齐来优化

原型生成. Wu 等人[18]开发的 MASiNet 框架通过在孪

生网络中融入注意力模块提升了小样本检测性能 .
Wang 等人[19]则针对工业互联网中标记样本缺乏和新

型攻击频发的问题, 结合 CNN 与原型网络, 提升了在

复杂环境下的检测效果. 尽管已有研究尝试采用原型

网络实现快速类别适配, 但在网络流量特征高维、异

构的背景下, 静态原型易受干扰, 难以准确表达类别中

心, 限制了模型的最终检测性能.
数据增强是缓解小样本问题的另一重要手段 .

Yang 等人[20]使用条件变分自动编码器 (conditional
variational autoencoder, CVAE) 重构网络流量样本并识
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别未知攻击. Xu 等人[21]通过选择代表性样本来训练

CVAE模型, 生成基于语义嵌入的样本, 缓解类偏差问

题. Zekan 等人[22]改进针对图像分类的 EC-GAN 以处

理表格数据的分类任务, 结合深度神经网络解决小样

本问题. 然而, CVAE生成样本过于平滑, GAN训练过

程不稳定且对超参数敏感, 生成数据质量受输入分布

限制, 难以保证与真实流量的分布一致性.
近年来, 扩散模型[23]依靠渐进式去噪生成, 在图像

生成领域展现出卓越性能, 其稳定的训练过程和强大

的样本建模能力为高质量流量生成提供了新的技术路

径. 在入侵检测领域, 扩散模型开始应用于小样本和不

平衡数据场景, 解决数据稀缺和异常检测的生成问题.
Zhang 等人[24]针对类不平衡问题提出了一种新的入侵

检测系统, 将数据进行增强数据特征相关性增强处理,
通过扩散模型和卷积神经网络结合, 提升了检测结果.
Yang等人[25]设计了 Diff-IDS轻量级模型, 提高模型在

解析复杂网络流量特征时的效率, 从而显著提高其检

测速度和训练效率, 适用于资源受限的工业网络入侵

检测系统. 此外, Wang 等人[26]提出了一种基于扩散模

型和 Transformer的物联网入侵检测模型, 利用扩散模

型学习样本特征模式的少数类别, 并生成平衡数据集,
提高了非平衡数据集的检测性能. 这些研究表明, 扩散

模型具备在小样本入侵检测中生成高质量样本的潜力,
并提供了新思路.

 2   模型设计

 2.1   总体架构

CD-DPN 方法的总体架构由数据预处理、条件扩

散、动态原型这 3 大模块构成, 结合生成式增强与度

量学习, 实现小样本场景下的入侵检测. 整个检测流程

如图 1所示.
原始网络流量数据包含正常流量和多种攻击类型,

包含统计特征、协议字段、时序信息等异构性特征.
为确保模型输入的统一性和质量, 需要对数据集进行

预处理. 首先对数据进行清洗, 去除错误与重复样本;
随后将离散字符型字段转换为数值向量, 并对连续数

值型特征进行归一化, 以保证训练过程的稳定性. 预处

理后的数据将作为输入, 交由条件扩散模型进行数据

增强. 该模块基于类别条件引导, 通过噪声注入与逐步

去噪过程, 生成与真实分布高度一致的合成样本, 增强

支持集的多样性. 最后, 动态原型度量模块基于增强后

的支持集构造类别原型, 并结合多头注意力机制进行

原型表示优化. 模型通过度量查询样本与各类原型之

间的相似度实现精确分类.
 
 

数据清洗

数据预处理

编码

归一化

条件扩散模块

原始数据

任务采样

动态原型模块

注意力机制
结果条件扩散模型

计算相似度
 

图 1    CD-DPN整体流程
 

 2.2   条件扩散模块

为解决小样本入侵检测中样本数量有限、类别分

布不均的问题, 本文设计了一种基于去噪扩散概率模

型的条件扩散生成器, 旨在通过合成高质量的攻击样

本增强支持集多样性. 针对网络流量数据的特殊性, 本
文提出以下改进: 采用余弦噪声调度与范围约束, 生成

扩散系数序列并限制其范围, 实现平滑、稳定的扩散

过程; 残差多层感知去噪网络和双重条件嵌入机制结

合, 实现类别可控的条件生成过程并提升训练稳定性.

该模型通过模拟数据分布的逐步演化过程, 在隐

空间中生成语义可控的目标类别样本, 从而有效扩充

训练集. 与传统图像生成扩散模型不同, 本文将条件扩

散机制应用于结构化的网络流量数据, 并结合攻击类

型标签, 实现类别可控的条件生成过程, 从而有效提升

样本的代表性与多样性, 缓解小样本带来的过拟合风险.
本模块核心流程包括前向扩散过程、条件嵌入机

制、噪声调度策略、去噪重构网络这 4 个部分, 整体

结构如图 2所示. 在训练阶段, 模型学习如何从带噪样
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本恢复出原始数据; 在推理阶段, 模型从纯噪声出发,
结合类别条件逐步去噪生成流量样本, 确保生成样本

与指定类别在语义上的一致性.
  

x0

x0

输入
数据

加噪
非线性噪音

前向
扩散

去噪网络生成
数据

xt

t

y编
码
器

联
合

逆向
去噪

 
图 2    条件扩散模型结构示意

 

 2.2.1    前向扩散过程

t

x0 ϵ xt

前向扩散阶段主要实现数据扰动, 用于模拟从原

始数据到纯噪声的演化路径. 即在时间步 下对初始数

据 添加高斯分布的随机噪声 , 生成加噪样本 , 如
式 (1)所示:

xt =
√
αt x0+

√
1−αtϵ, ϵ ∼ N(0, I) (1)

αt αt

αt = 1−βt

其中,  是 的累积乘积, 控制数据在扩散过程中的保

持程度.  表示每个时间步中残留原始信息的

比例.

βt

对于噪声的处理, 本文采用余弦调度策略, 决定添

加噪声的强度 , 可以用式 (2)表示:

βt = 1−
cos2

(
t/T + s
1+ s

· π
2

)
cos2

( s
1+ s

· π
2

) (2)

T s其中,  是扩散总步数,  是平滑常数, 用于避免分母为

空并控制曲线形状.
相较于线性调度, 余弦调度曲线具备良好的平滑

性与收敛性, 能够更自然地模拟数据退化过程, 避免突

变噪声对生成质量的冲击, 有效提升模型的稳定性与

生成效果. 其前期噪声注入缓慢, 有利于模型学习数据

结构, 后期则保留足够信息提升重建质量, 特别适用于

网络流量等高维特征数据的建模.
 2.2.2    逆向去噪过程

t

y ϵθ

逆向去噪阶段从纯噪声开始, 结合时间步 和类别

标签 , 由神经网络 逐步预测并移除噪声, 恢复目标

数据分布.

xt−1 =
1
√
αt

xt −
1−αt√
1−αt

ϵθ(xt, t,y)

+ √
βtϵ (3)

为增强生成条件控制能力, 本文设计双重嵌入机

制: 时间步嵌入采用正弦位置编码构造周期性时序表

示; 类别嵌入使用嵌入层将离散标签映射至连续向量

空间. 两者拼接后形成条件向量, 作为去噪网络的条件

输入.
去噪重构网络采用多层感知器作为主干, 并引入

残差连接结构, 以简化训练目标. 该结构通过在输入和

输出之间建立直通通道, 使网络仅需学习输入与输出

之间的差值, 从而简化优化目标并增强训练稳定性. 相
较于 U-Net 等复杂结构, 该轻量级模型以更少的参数,
在不牺牲性能的前提下大幅降低计算资源需求.
 2.3   动态原型模块

为模拟小样本场景, 动态原型网络采用基于任务

的学习策略, 通过动态任务采样器从数据集中构造多

个 N-way K-shot 任务. 每个任务由支持集 S 和查询集

Q 组成, 分别用于原型构建和分类评估. 其中支持集包

含 N 个类别, 每类 K 个样本; 查询集包含相同的 N 个

类别, 每类 Q 个样本, 两者类别相同但样本互不重叠. 在
这种任务构造下, 模型通过多轮任务训练不断积累跨

任务的通用知识, 从而具备对新类别的快速适应能力.
在小样本场景中, 传统的度量学习方法难以处理

不同攻击类型间边界模糊、特征重叠的问题. 为此, 本
文在原型网络框架基础上, 引入任务式训练策略与多

头注意力机制, 以增强对小样本数据的表征能力与新

攻击类别的适应性. 网络架构如图 3所示, 主要由 3部
分组成: 特征编码器、多头注意力机制和损失函数.
 
 

计算相似度

多头注意力

编
码
器

原型
支持集

contrast

ortho

编
码
器

查询集

λ

+

 
图 3    动态原型网络结构示意

 

Q K V

为实现统一的特征表示, 动态原型网络对所有样

本使用共享的嵌入编码器, 将预处理后的特征向量映

射到高维隐藏空间, 生成嵌入向量. 在原型构造过程中,
传统原型网络直接对支持样本取均值, 忽略了不同样

本对原型表示的贡献差异. 为此, 本文引入多头注意力

机制对支持样本进行加权聚合, 构造动态类别原型. 通
过计算查询矩阵 、键矩阵 和值矩阵 , 生成注意力
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权重, 公式如下:

Attention(Q,K,V) = Softmax
(

QKT
√

dk

)
V (4)

pc =
1
K

K∑
i=1

Attention(Ec) (5)

dk Ec

K pc

其中,  为注意力头的维度大小,  为嵌入向量通过注

意力机制, 对 个头的输出聚合得到原型 .
注意力多头机制从多个子空间提取差异性表示,

确保原型表达能力覆盖类别的主要特征方向. 相比静

态的均值表示, 该机制能够动态关注关键样本, 弱化噪

声样本影响, 从而提升类内一致性和类间区分度.

Lcontrast

Lortho λ

为了进一步提升原型间的判别能力, 本文设计了联

合优化的损失函数, 由原型对比损失 与原型正交

正则项 共同构成, 并通过超参数 平衡两者的权重:

L =Lcontrast+λLortho (6)

τ其中, 原型对比损失通过温度参数 控制查询样本与各

类别原型之间相似度分布的陡峭程度, 引导模型聚焦

于目标类别原型:

Lcontrast = −
1
Q

Q∑
j=1

log
exp(q j · py j/τ)
N∑

c=1

exp(q j · pc/τ)

(7)

Q q py

N pc

其中,  是查询集样本数,  是查询样本的嵌入,  是其

对应的真实类别,  是原型的类别数,  对应的各类别

原型.
正交正则项采用 Frobenius 范数计算原型矩阵的

正交性偏差:

Lortho =
∥∥∥PTP− IN

∥∥∥2
F (8)

P IN其中,  是所有类别原型的矩阵,  是单位矩阵.

该正则项鼓励类别原型在特征空间中保持最大化

区分, 提升类别边界清晰度, 有效缓解攻击流量分布重

叠导致的混淆问题, 使模型能够更准确地区分不同攻

击类型.

 3   实验分析

 3.1   实验环境与数据

所有实验在 64 位 Windows 10 操作系统下进行,
使用 Intel Core i5-8300U CPU@2.3 GHz 处理器、

NVIDIA GeForce GTX 1060 显卡和 16 GB 内存, 实验

环境为 Python 3.10, CUDA 11.8和 PyTorch 2.3.1.
为验证所提方法在小样本入侵检测任务中的有效

性与通用性, 本文选用由加拿大网络安全研究所 (CIC)
所提供的 CIC-IDS2017、CSE-CIC-IDS2018[27]公开数

据集. 具备攻击种类丰富、特征维度高、数据可扩展

等特点, 被广泛用于入侵检测研究. CIC-IDS2017数据

集在真实网络环境中模拟攻击行为, 生成了大规模、

结构化的流量记录以供分析. CSE-CIC-IDS2018 数据

集进一步增强了数据的多样性与复杂性. 其模拟环境

覆盖多个网络拓扑与平台配置, 包含更多种类的攻击

模式与精细的流量特征, 能够更全面地反映现代网络

环境中的安全威胁, 为入侵检测研究提供了更具挑战

性的测试平台.
为保证模型训练与评估的公平性与有效性, 本文

对原始数据进行了预处理和筛选. 为了确保数据质量,
由于某些流量类型的样本量低于 20条, 不足以支持训

练和测试, 则予以剔除. 最终从 CIC-IDS2017 数据集

和 CSE-CIC-IDS2018数据集分别保留 14和 15个流量

类型作为实验对象, 覆盖正常流量及常见的攻击场景.
具体流量类型如表 1所示.

 
 

表 1    数据集基本情况
 

数据集 类型数量 流量类型

CIC-IDS2017 14
Benign, FTP-Patator, SSH-Patator, DoS Hulk, DoS GoldenEye, DoS Slowloris, DoS Slowhttptest, DDoS, Web

Attack-Brute Force, Web Attack-XSS, Web Attack-Sql Injection, PortScan, Infiltration, Bot

CSE-CIC-IDS2018 15
Benign, FTP-BruteForce, SSH-Bruteforce, DoS attacks-Hulk, DoS attacks-GoldenEye, DoS attacks-Slowloris,
DoS attacks-SlowHTTPTest, DDoS attacks-LOIC-HTTP, DDOS attack-LOIC-UDP, DDOS attack-HOIC, Brute

Force-Web, Brute Force-XSS, SQL Injection, Infiltration, Bot
 

 3.2   实验设置

为模拟真实入侵检测中样本有限、类型未知的任

务环境, 采用典型的 N-way K-shot 小样本设置进行实

验, 对 CD-DPN 模型的学习能力与泛化能力进行综合

评估. 具体而言, 本文采用 5-way K-shot 的任务配置,

在每轮任务中随机选取 5 个目标类型, 即正常流量和

4个攻击类型作为当前任务的目标类. 从每个目标类别

中分别抽取 K 个样本构建支持集, 以模拟小样本场景

下的分类挑战. 在训练阶段, 模型仅接触一部分攻击类

型, 测试阶段则评估其在未见类型上的识别能力, 从而
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模拟真实环境中新型攻击的检测任务, 考验模型在小

样本下的学习能力.
为了确保所提出的方法能够有效运行, 需要对模

型的训练和推理过程进行参数设置. 本文模型的超参

数设置详见表 2.
  

表 2    参数设置
 

超参数 设置

T扩散步数 500

βt噪音参数 [0.000 1, 0.02]

学习率 0.000 1
优化器 Adam
Dropout 0.8

τ温度参数 0.1
训练轮数 200

 

 3.3   评估指标

为了全面评价所提方法的检测效果并确保研究结

果的可比性, 本文采用以下常见的分类指标: 准确率、

召回率、精确率和 F1 值. 上述指标均采用宏平均计

算, 即对每个类别分别计算指标后取平均, 以避免数据

不平衡的影响. 这些指标能够直观体现模型在均衡数

据集中的综合判别能力, 提供全局性能基准, 确保与经

典研究的纵向可比性. 从整体分类效果和类别平衡两

个维度构建多层次评估体系. 为减少实验随机性的影

响, 提高实验结果的可信度, 最终指标取多次独立实验

的平均值.
 3.4   实验结果与分析

 3.4.1    K 值变化实验

为探究支持样本数量对模型性能的影响, 本文在

两个数据集上开展了不同 K 值设置下的对比实验. K
分别取值为 1、5、10 和 15, 固定 N 值为 5, 保持每类

查询样本数量不变. 评估指标选用准确率和 F1 值, 以
衡量模型在不同支持集规模下的检测能力. 实验结果

如图 4所示.
  

K=1

准
确
率

K=5 K=10 K=15

0.74

0.78

0.82

0.86

0.74

0.78

0.82

0.86

CIC-IDS2017

CSE-CIC-IDS2018

CIC-IDS2017

CSE-CIC-IDS2018

F1
值

 
图 4    K 值变化实验结果 (N=5)

从图 4 中可以看出, K 从 1 增大至 5 时准确率和

F1 值显著提升, 表明样本变多提供了更丰富的类内特

征, 增强了对类别的表征能力. K 从 5 增大至 15 准确

率和 F1 值的提升减缓, 从 10 增大至 15 时明显平缓.
反映了类内特征的多样性已基本被捕捉, 增加样本的

边际收益递减. 由于实验结果表明, 模型在 K=10 时已

基本捕捉到类别的主要特征分布, 且在准确率与 F1值
上的提升较为平稳, 进一步增大 K 值带来的性能增益

有限. 因此, 为在保证检测性能的同时避免训练成本过

高, 本文后续的小样本方法对比实验统一采用 10-shot
设置, 作为典型的小样本场景进行性能评估.
 3.4.2    数据增强方法对比

为评估 CD-DPN中条件扩散模型在小样本场景下

的有效性, 实验在 CIC-IDS2017 和 CSE-CIC-IDS2018
数据集上, 分别对比了 4种不同的数据增强方式: 原始

支持集 (无增强)、CVAE[21]、EC-GAN[22]和本文提出

的条件扩散模型, 比较不同生成方法在对分类结果的

影响. 为公平比较, 均使用本文的动态原型网络作为分

类器, 评估生成方法对分类效果的影响. 实验采用准确

率和 F1值作为评价指标, 结果如表 3、表 4所示.
 
 

表 3    CIC-IDS2017数据集上的对比实验结果 (%)
 

方法 准确率 精确率 召回率 F1值
无增强 81.58 80.42 80.70 81.16
CVAE 82.48 81.55 82.13 82.05
EC-GAN 83.61 81.97 82.36 82.92
本文 84.27 84.54 82.62 83.97

 
 

表 4    CSE-CIC-IDS2018数据集上的对比实验结果 (%)
 

方法 准确率 精确率 召回率 F1值
无增强 80.10 79.11 78.90 80.96
CVAE 81.92 80.05 81.59 81.73
EC-GAN 82.37 81.56 81.87 82.52
本文 83.34 82.54 83.12 82.85

 

表 3、表 4 显示, 本文提出的 CD-DPN 方法在两

个数据集上均取得最优表现. 在采用不同的增强方法

后检测效果均有所增加, 验证了增强对小样本入侵检

测任务的有效性.

具体而言, CVAE通过条件建模生成流量样本, 但

其本质为潜变量重构机制, 在异构特征场景下难以精

准拟合攻击样本的高阶结构, 提升幅度有限. EC-GAN

在生成对抗机制下可生成更贴近真实分布的样本, 但

在 CSE-CIC-IDS2018上性能下降说明其处理高维复杂

网络环境时适应性有限. 相比之下, CD-DPN所采用的
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条件扩散模型通过逐步去噪过程建模攻击样本分布,

在余弦噪声调度与残差连接的协同作用下, 有效提升

了样本生成的质量与多样性. 此外, 扩散过程通过类别

标签进行条件控制, 使得合成样本在语义上更贴近目

标类别, 进一步提升了增强样本的判别性. 实验结果验

证了本文提出的方法有效缓解了小样本问题带来的过

拟合风险, 提升了整体检测性能.
 3.4.3    小样本方法对比

为了全面评估本文所提出的 CD-DPN方法在小样

本入侵检测任务中的性能优势, 本文选取了 5 种具有

代表性的小样本学习方法作为对比: 原型网络[14]、孪

生网络[15]、Meta-Baseline[28]、PFTD[12]和 FS-CT[29].
所有方法在 10-shot 设置下进行评估 ,  分别在 CIC-
IDS2017和 CSE-CIC-IDS2018数据集上测试其分类准

确率、召回率、精确率和 F1值, 结果如表 5和表 6所示.
 
 

表 5    CIC-IDS2017数据集上的对比实验结果 (%)
 

方法 准确率 精确率 召回率 F1值
原型网络 76.67 75.68 76.67 75.87
孪生网络 79.44 77.96 79.55 78.11

Meta-Baseline 80.89 79.88 81.02 79.90
PFTD 81.07 75.57 78.09 75.78
FS-CT 82.11 83.29 81.58 81.44
本文 84.27 84.54 82.62 83.97

 
 

表 6    CSE-CIC-IDS2018数据集上的对比实验结果 (%)
 

方法 准确率 精确率 召回率 F1值
原型网络 74.33 74.28 73.51 73.72
孪生网络 77.56 75.14 76.52 75.16

Meta-Baseline 79.67 78.67 79.38 78.89
PFTD 80.48 75.22 77.57 75.01
FS-CT 81.64 78.55 80.43 79.25
本文 83.34 82.54 83.12 82.85

 

从实验结果可以看出, CD-DPN 在两个数据集上

均取得了最佳的检测结果. 在 CIC-IDS2017 数据集中,
CD-DPN 的 F1 值为 83.97%, 相较次优模型 FS-CT 提

升 2.5 个百分点; 在更具挑战性的 CSE-CIC-IDS2018
数据集中, CD-DPN的 F1值为 82.85%, 相比 FS-CT提

升了 3.6 个百分点, 且召回率与精确率较为均衡. 这一

结果充分体现了 CD-DPN在应对复杂异构流量环境时

的强泛化能力与鲁棒性, 表明 CD-DPN 在小样本场景

下能够更好地平衡类迁移性和任务泛化性.
在所有方法中, 原型网络与孪生网络的性能相对

较低, 主要原因在于这两类方法通常依赖静态的类原

型构造方式或固定的相似性度量函数, 无法充分适应

类别分布差异较大的流量数据. 而 CD-DPN采用注意

力机制和联合优化的原型分类器, 使得类原型更具表

达能力和判别能力. Meta-Baseline在元学习框架下具

备一定的任务泛化能力, 但其训练依赖充分的任务抽

样结构, 对于复杂网络流量分类任务难以完全拟合.
相比之下, CD-DPN 借助条件扩散模型在类内生成多

样化样本, 有效缓解了过拟合和迁移困难的问题. 尽
管 PFTD 引入了联邦训练策略, 但联邦学习中的分布

式训练对边缘设备数量和通信效率敏感, 且受限于通

信开销与模型聚合方式, 导致全局模型对某些类别的

偏见从而影响整体检测性能. 而 CD-DPN使用可控的

生成机制和动态原型网络, 无需通信代价即可高效模

拟多样任务, 有效降低了训练难度与资源开销. FS-CT
使用了余弦注意力用于增强支持-查询对之间的相关

性建模, 但类别原型生成是一次性的, 面对网络流量

数据时难以有效建模复杂类间分布. 而 CD-DPN中的

注意力模块作用于原型构建阶段, 能够在特征维度层

面自适应捕捉任务相关性强的表示, 提升了原型的判

别力, 联合优化策略进一步增强类原型的判别能力与

表达鲁棒性. 最终在不同场景下均保持稳定的高性能

表现.
综上, CD-DPN 在小样本入侵检测任务中展现出

明显优于现有方法的性能, 验证了其结构设计的有效

性和在现实复杂网络环境下的实用潜力.
 3.4.4    消融实验

为了评估所提出 CD-DPN 方法中各组件的有效

性, 对 CIC-IDS2017和 CSE-CIC-IDS2018数据集上的

10-shot 任务进行了消融研究, 以评估每个组件的有效

性. 表 7展示了比较结果.
 
 

表 7    消融实验结果 (%)
 

数据集 模型 准确率 F1值

CIC-IDS2017

Exp1 81.58 81.16
Exp2 82.34 82.56
Exp3 82.16 82.51
本文 84.27 83.97

CSE-CIC-IDS2018

Exp1 80.10 80.96
Exp2 81.89 81.86
Exp3 81.32 81.24
本文 83.34 82.85

 

实验设置包括 3种变体: Exp1去掉条件扩散模块,
直接使用原始数据; Exp2 移除多头注意力机制, 使用

均值生成原型进行表示; Exp3 移除正交正则项与对比
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损失, 使用经典原型损失作为训练目标.
实验结果显示, 完整 CD-DPN 模型在两项指标上

均优于所有变体, 证明了其整体架构设计的合理性. 从
Exp1 中可以看出, 移除扩散模型后导致显著的性能下

降, 表明扩散模型在增强模型的判别能力方面发挥了

关键作用, 缓解了数据稀缺导致的模型过拟合问题.
Exp2 移除注意力机制后, 准确率与 F1 值均出现了一

定程度降低. 这说明注意力机制能够更充分地捕捉样

本的关键特征, 从而生成更具代表性的类原型, 而简单

的均值表示无法实现对关键特征的差异化聚合, 导致

类代表性下降. Exp3中移除损失项检测效果有所下降,
说明联合优化策略能够有效优化空间结构, 拉近类内

距离、区分类间特征. 综上所述, CD-DPN的 3个核心

组件均对模型效果具有重要贡献. 它们分别从数据增

强、特征聚合和特征优化这 3个不同角度提升了小样

本入侵检测的泛化能力与鲁棒性.

 4   结论与展望

针对小样本场景下入侵检测面临的挑战, 本文提

出了一种融合条件扩散生成与动态原型表示的检测框

架 CD-DPN. 该方法通过条件扩散模型生成高质量网

络流量样本, 从而提升数据表达能力; 设计了结合多头

注意力机制的动态原型网络, 实现高效原型构造与度

量推理, 实现了自适应加权聚合与类间对齐, 提升了模

型对少量样本的判别能力.
在公开数据集上的实验结果表明, CD-DPN 在小

样本场景下展现出更好的检测结果和泛化能力. 未来

工作可进一步探索更高效的生成机制、跨域迁移能力

及与联邦学习等新型隐私保护技术的融合, 以提升小

样本入侵检测方法在实际场景中的应用价值.
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