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Abstract: Monocular depth estimation (MDE) is a core task in computer vision, essential for spatial understanding, 3D
reconstruction, autonomous driving, and other applications. Deep learning-based MDE methods can predict relative depth

from a single image, but they often lack metric information, leading to scale inconsistency and limiting their utility in
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downstream tasks such as visual SLAM, 3D reconstruction, and novel view synthesis. To address these limitations,
monocular metric depth estimation (MMDE) has been introduced. By enabling scene-scale inference, MMDE addresses
depth consistency issues, enhances temporal stability in sequential tasks, and simplifies the integration of downstream
applications, significantly expanding its practical use cases. This study offers a comprehensive review of the development
of depth estimation technologies, from traditional geometric approaches to modern deep learning methods, highlighting
key milestones and breakthroughs in the field. Special emphasis is placed on scale-agnostic methods and their role in
enabling zero-shot generalization, which has been foundational for the progress of MMDE. The study also examines the
latest advancements in zero-shot MMDE, focusing on critical challenges such as improving model generalization and
preserving fine edge details. To address these issues, innovative solutions have been explored, includ.ing advanced data
augmentation techniques, refined model architectures, and the integration of generative approaches, leading to significant
advancements. This review analyzes these solutions and their contributions, in de{ith. The study concludes by synthesizing
the connections between recent achievements in zero-shot MMDE, idenﬁfying unresolved challenges, and exploring
potential future directions for research. By providing an“in-depth analysis of the current state of the field and emerging

trends, this study aims to serve as a valuable resource for researchers, offering a clear roadmap for understanding and

advancing MMDE technology across a wide range of applications.

Key words: monocular depth estimation (MDE); metric depth estimation; deep learning; computer vision
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T FREA B BVR B4 1 (MMDE) (1532 44
73, BRI B P M3 0 5 AR VA A
. B 90 B A T 0 U R M AR A
=1 5500, AR TR TR 5T A 0 0 R R
I T T S MR S 5 B, AR A 08 9
T S 7 TS i
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FEHHE Y78 5 T, Depth anything £2 H 51 F 2 &
H 2 2] SRS I B R 3 78 0732, il g AR e 6200
Jik bR, BRI TR i A s Y %
LA AN R SR 0, HESTR U AE R 2 213
S B 2R S AL B R, (RIS, JE sk A B B AL
il, Depth anything 787 ] FH T 254 65 4% Hh =F & 115
N5, B ER T 2R ZE . X IR = N E 4
Yy s BB FEAR R B AL THRE IR I R, AR TR
S RANER G eRER e DN NSRS SR G s
frave 71, | %

6B 7 PRI IS T, UniDepth 42 T — Fl B 45
it £ & 3D ?ﬁiﬂ‘]ﬁﬂ%‘ﬁ%%ﬁﬁ#ﬁ?ﬁ, Jo R MO A 4
FOATHL 2 5500 MY A% 0 S A 3% HE L
B (self-promptable camera module) A& Al B 25 AL R
7, K O 3K T i H o A R AR ATURD R B R AIE, AT
L RO IN R AT E N G A AR IR R G 1A
UniDepth & 3 52 T+ 7 VR FERFE I 84 14 A2 A0 1 fe.
LEAb, I HIHL E 2% (bootstrapping) A1 2R & AHAL A
Z I EALE, UniDepth SBT3 FEAEIIR
vt AR S H05S TR B R AIE 1 2 ) SR, N dE s
MMDE #8137 A RE 184 T 3 ) AR S .
5.2 WTEKRSIHGEEEM

0T T R AN 25T A TR L 2 S R R A Fun A
15 LI )3 38 ) ﬁ%@fﬂ%ﬁiﬁﬁ&%ﬁﬁ . BB E
A ARG 0 5 AT 40 T8 02 A7 A 5 15 3 [ U 3o
7% 55 72 K0 B (G4, e 3R i 2 R A s
4 (ﬂﬂ%&%{\ BREE), I3 ECAE R E sk = 2
R R P, LA B S B S T I
A RIEE Z3g 5 0N R, B i () 14 3 5t
Bl R B AR 1R X 3, BRI AR TR v R R N R R ) S
BRI, LA, Gl 7855 ) m] K S2 38 A R 2 s 45
PR N — AP R AR T A T
I3 HEER S5 T M DA TR] B SHE 0014 g — S0P A R S A T 3R
A, AR IR FE B AT RE B Z A 41 E, B — D T Y
BB AN 430 T DX S SO A I R Ry 9 6 X e Bk
WA R T 2 Mg T . 0, SharpNet i@ id 51 A
VLR AE YR B 2 SRR L GBI B, (X KTV
BUGANA I BHME S, BN T NS E A . T S — Mok
BoostingDepth JUJ 38 i3 AI% 73 7% 3 9 2 Sz 32 H T~ R
PS5, B i T RG22/ LR %
LR B W 2 P IRE A B, R T AT AR
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i H AR SN A

AN I A e P,

A A 3K 6 ) @, B AL X PRl SR 1T R R AR T3
Tt 2 B ek I 0], 77 BEE ORARE v 28 1) ) B 5 TR
FEMGTH RS 20K
5.2.1 Patch Jj %

N T RV F R AL G0 B ) @, 5T R
T — R BT EBR I B (patch-based) HIT7 ik, X L8
JrEiEE R R AT S 2R BT SO RS, B RUR
b7 IREEE oy H R S AT R, RN EIR TR RS
7375 GlIOP LR e

PatchFusion #& X BoostingDepth B i — Ff1 4= 57
W, HAz O AE TR NS BN I 2 70 B3R R
ASRIRTH B H IR BEAG TH 6 0 98 0. BARSK 3, Patch-
Fusion 4 B & %173 2 N3 (patch), M7 g AT IR Al
i, Hilid 4 R 3R EE (global-to-local, G2L) fHL4E &
SRy T SCHE Bt AT — BebERLA . FIRF, PatchFusion 4
th T“*?&‘Tﬁ@%ﬂﬂll%'ﬁ?’éfi%ﬂiﬁ (consistency-aware
training and inference, CAT & CAI)”, \ JLfl il (e —
Btk AL T PR XS SR, VAR E AP IR
FERHERE, ALFE T RAE . BREEAGTE. PR R4, iR
IR, thah, T EAR P 5 3 E, PatchFusion 7E
HE 2L 37 5 R AT BE 2 OB R N A AR SR BRIR B, 3B
4R35t EL R LW Z . PatchRefiner 7E PatchFusion
(LAt b — 2B Rk, A 20 AR R A T EE R E
P 2P, PatchRefiner 3 it #2 H <405 5 R
4 #4555 (detail and scale disentangling, DSD)”, 7
SIS BRI FE I [F I, A OR T IR B R k. %

EREEE X HE R I S PR, SIS T & RO

D BRI, Rl T H S s 5 S e [a] 0 K 1R
LR HFGE. AL PatchFusion, PatchRefiner E‘Ji‘%ﬁ%{{iﬁ
W T 2V IRETE, WA T HEEACR, IF HARR
i AN A AR S e bR Bt
Depth pro NI 5 5CFE SEBR N R HEEE 20K DL
e A0 AR B fig oy U ik A R A 22 R R
Transformer (ViT) FlE 52 5 & BEHE FIEE YR TRL,
Depth pro 75 PR JHHEFE 11 [F] B OREF 740715 £ B2 11 R
AV V) J7ER > & SRR B, BECRIE T
JRIERHTT i) se B, WA %A@ T PatchFusion il Patch-
Refiner /759 B F SCE K I A . UE4h, Depth pro 3¢
FF B3 sk G HE W 8 0 IR B, 25 7 X AEALIN 2
A, R A 1 7k B B 2% M. SR T, Depth pro 1

VT S A B A A 0 R B T i, % T 97
o — B B B VR P A L RCRG R
5202 ARECRSERIE TS

1 SIS 0 3 A — e o
S, B S R T X 35 1 R A
ey VRIEIE 53 B ORUCEE, UL MMl 55 SR 3%
S ) B T YR RS SRR B bR 7 1 1 R IR, R B
SR TR EEER. M2 T, & REGREE
So BB T e 51 4 B AR 3D LR, TR MR
S KBRS IR, IR B A AN B 4 T, 36
7 T IS KR BT PR %, e S A
X . |

Depth anything V2 FF T & B $HE 13526 68 35,
SR T — DA A R AR O TR TR AR A 5
BT 50— S T R S AR e, I R
1 P R S 5 2R P 2 REAL 13 3 U 5,
T IS HH SR R LB A B R ) R, 7 EL A%
B e 2 B AT, & OS5 B S SR e i
SR BT R E A7 7 5 2 S SR A R T i
R4 80 (032 A0 Bl 7, R B 7E 2 FROKOHR v R 2 25 £
35 . A TRIX — B, Depth anything V2 #i 7
— Dl AR ST 5 TR TR g MR A
O RAE, UL/ 2 B R 0 20 S50 2 1] ) 4345 25 5
[FIEF, B BN T R DL TRBR T B, DA R ]
65 I R AT 2 2R T %0 SRt 2K o ¥ 3
T R (015, it 22 W0 1 25 50 Jg K X I,
X TG G5 AR i 4815 %1 -8 LA 3 5 O RE A A
b KR R PR AR AR A 7. b T PR 31 B 2 1
3775 T 26 905 FEL AT R, AR 75 0 oK L3t 1) 2 59 S
T B R B,
523 ARk

A A BRI 4 K 1 AR B L R B A R 3
5T RIAT 2 0 B T 07 7 S 3R . 2%
RIS PR M4 1S, 7 2 it b i bR
SRR, RIS R4 T R A A1 i,
Marigold & JCHH™ BOBETR (1998 77 31 AR FEE 0+ 9K,
A R FE VR 7 5 b — SO R0 5 1 b et
A G AR5, 0 R R B 5 U B W X SR,
Marigold FIERILIC A H . 81, T 2 s 8= 10
R s SCPE ) B, Marigold FOAE IR T RE & H BT
TS5 JR R, R ) 7 HA 5 A 2 8 B o 2 .
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Bl XX B8 R R, GeoWizard XF Marigold f 5 733k
177 NP, GeoWizard 51 N T —F#7 ) Decoupler
S5, WA [FS s 0 A 4 B AT 2 20, MR A b ysksb>
TRA AT R IR A S e, @I RN — 4
SR ME (WMEN. EINIVE ), GeoWizard &
FHIG0R T ERE Z Y soh Iz AR ). X P U
GeoWizard £ 5 J% 17 5% o IR FE Al TH 2 0 50 I A2 4k,
R ) 2 5 TS S X 2 0 2 A1 b s 0 ) LART A7 =) 0000 77 T8
B, & e A RACRE G I 57 70 3 AR VR R 4 10 1) R, O
B AR I iR 37 o ) = 4 L 4544, GeoWizard i
SEA ATV IR S BINT S48 i O 5 B iR i, ok
W7 R E A, AR BCE NG B 3D JLFTTRIR.

5 it FR}, DeepMind #2 H f) DMD (diffusion for

metric depth) #F— G HES) T ¥ BB AL /E B BIRBEA

Fj 1. DD f04 00 0357 25 SR R X SR BE R FE
SRR, TR U T2 WA 5% b IR 7 e
SYRRAS I 1 )L SBIE S| ABLS (FOV) %1, DMD i
R T R R P 2 22 S 5 e I R L E
SRH B, DMD et 48 05 I 7 76 B R WL
I ZEEOE, 36458 B FOV AE R 2 R4 N, DR 5 20
F 2 B AL 3 5108 BERE A B 2. 51, DMD SR A
e~ B A L3 B, (L7 2 % R B T 5 R
RER R, ST T 4R
53 Bt SEE

PEBRIE AT AL 25 o, e U 7 v PR L e 8 2
FRO R AR SR B 4L X F 907 T 3 e —
VR B ) 52 PR R U, A5 53 4 0 S 1

SR (137 5, U A2 AL A ORI SE I 3. 2R T

P T 525 LT R 9 1, 3 )y A A
BRSSO S AR B R LR A, 2
RRHA I FEI2AN V5 A 05 S . (RN, 0 K
8 BT O PO R, T T o M A
T 2 2 K%, SAHRIAEIZ (L A8 77 L SRR,
55 YHERRAR He, 2T 505 (patch) (O 3EE 77 i3
LA B 5.3 92 9 % AN (pateh), SEHE 58 RIS
(IR A 4, TR B0 U T 35 Bt
S 4400 patch (%I, BURIFT BISE— S5 4R FH50 B2 AT
TR, DB L6 W 7 0 947 (LR B 7. SRTT,
KA AR I HE B 1B patch $iHE 175
IR PR, FLE BB TR TR, i, Patch-

8 TR +Z5iR Special Issue

Fusion JBARTE patch KU & A 404k, (HIL 1R
Ff B0 e DA 2 S SR B4, 2 VB I
5 FLAE T 40 5 e PR T

e A B IR e e R A o P RO40°45 2k ]
RIS T A FEL B T30 R o 0L PR P 7R,
S A A PR AR, 1 R FE VR, 4 8 P15 PR 7 285 1 A 2
s U ok & RIS, 140, Marigold £ & 24375
B v A R B L % LRSS 2 T ) L AT K R,
A R FE B = L 118 AT B % 26
HEERRE 5 R T A I R R £ 3 A — S B
HUPE, AT 1 I A s S (N T 5 . 0, 37 1%
15 B R A (MMDE) J7 T 1 BF 72/, H BTk %
(B VR 5+ (RDE), R 7 H i 514
(s I A

BEAN, A Ry A SR R R BB
530 0 7 4 KRRV R AR, A R ks
R E 6 B/ B 5 5t R R AT R
1, DMD 3T 51 NI 4 A RO BOR BE IR BE S H Ak,
BB T BRI BT IR RS 7. SRl
J7 TR B AL B 2 AL 0, JRTE AT P4 PR T
1 5 1 2 8 TN T, 2 TR 25 068 2 R ) 5 2
I A 75 A R BRI T D6 2 S PO BE SR, 457
B, 1 LA R, ELWA EE T 54 P
BB/ KNG /A WS
TR [ R A R, AR (bRt T
SR A Rt 5 VR O AR R R
HEAST LA 4 MR FE (. 7T DU | Patch J7 0
IR T VA AR T S BT VR4 S R
438 1] .

B2 XL 7 B R HEELE A | Patch ) BRASEAY A=
2R 1) SR 7 i A BT 1 P 7 TP L R L
LT 400 W) 1080p FLARTE RTX 3090 b kAT 4
FISII V ROBER ) T4 DL s J9BRr, IS HON K,

Sy K, B VCHE B 7 155 U 5 R SN A4 A
3, (AN A 7 A2 3 T4 B3y ik
TE 43 e S RN 20 _E AR T 5 YO 30, (L HE B e B
% patch HCH I 535 F M A2 Ay AR ) 4 £ 22
R 21755 T8 B2 i 3 R0 52 2 5 T L AR B 3 BROR TR
R0 1 TR, E 32 45 HE B A 2R SR ) T 9
FF 2 B T B A
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ZoeDepth  Depth anything Depth anything V2 UniDepth

4

PatchFusion Marigold GeoWizard

“‘I.I{ . '
=2 20 T o B SR

PR YR AT Patching DS WRA
B 1 AS[RIZE I T 3250 tH AR BE 6 bl
/=
' Categoryf o én %%é

ion (p= — o Single infer B P NN
2 e o | Dt mode JLAF ok, MMDE HYBF SRS T 55 R, WA 4
s Depth;{n'}[/)t/};ilslg;/} ® Memory cost (GB) E‘Ji*@c%ﬁ:%@iﬁﬂiﬁ%%iﬁﬂﬁﬂﬂl%}%%{iﬂc

iDAS v3. . 56

Time (s) JIVERHIE 4G, F BT )7 HE 3. L rp A el U 2
2 N[ A PRy TR e B 3 R e R R P AT R OR 22 4 H TR PR PR AR, A RRORE Y A ) R B VR )
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ME— sz DMDU R IFIE. A i 779248 MMDE L ()
BRI 12 8.

2 BT T U 7 IR TR A B R AR A
ARG AR BN EBE. T DUE H AR B R A
MR, ZeroDepth P H A7t 23 A 1T J6%: 56 ik, Meetric-
3D T AR ML S %L, Depth anything 14 #8 AR 58
ERFE TR R L B EREARZLR. AL, R LR
AN R R AY 7R AN [ AT 1 1 RE AT SR A7 7 i 8 22 7, X
B MMDE (P H 3R B Al 1) 5884 532 A0 1t A 8K
IR TEASIA]. 25 2 il 6 NEdE 4546 1 6, 1 PR
Fabr (MR E R G, BT VP Al AL i R R A PE R,
MR R 5751 H E Depth pro!'; fJ5 2 /> ¥ 4 18

AbsRel {E VP iR (LI ML AR) VA2 1)
SETREAMERE. % 2 PR R —E S M, (Y
A MDE 45080 2 32 0T B B b Rt 1l
AT K TG4 2 X AT R 5, AT S
P LA SR R A 2 LU th, R G A S
AL O AR AT G, 8 3D T SR BE A T B R AE 2 R AL
Y e (RS 7, 9 = 4 B S S A ) B K
T AW AT R, AT, LA I Y IRTH I 1 2 HhAR,
RS BIOBIR . SR L] — B LUK
7 S 97 P e 5 0% 00T R, 33 T St
55K B MR T O L T PR [ B,
L IE 54 R A LT K 3R 5 1 L7

1 B LR S IR S T A

Jrik T 15 RR ]| HERE RSN WL A7 A IR
ZoeDepth!"”! arXiv F51 %/¢ HSE FEE 2
Depth anything!'® CVPR2024 | S5 RV HSE fE P
PatchFusion™” CVPR2024 S5 E2VN B JE &
UniDepth™* ‘CVPR2024 F5 IR B & P
Marigold™” CVPR2024 AR E2VN Ak Fibal R
DMD!" arXiv ARk 2 H FE %
Depth anything V2!'”! NeurIPS2024 F1 5 IR HAAHA L e 2
GeoWizard™ ECCV2024 A EA/N HSHE R Fichs =
PatchRefiner™" ECCV2024 H15 E2/4 FLHE K R =
Depth pro!'! arXiv F51 Z IR B+ K i3y =
£ 2 P 5 R AR A FE TR AR s L IR BB MR b
%\ AbsRel |
Jiik Booster  ETH3D Middlebury  NuScenes Sintel Sun-RGBD _ NYU w2 KITTI
EN EAh =4 b E I =N B Ehh
Depth anything"® 523 93 39.3 35.4 L 69 - 850 43 7.6
Depth anything V27 59.5 36.3 37.2 17.7\‘ 5.9 72.4 4.4 74
Metric3DP! 47 342 13.6 64.4 17.3 16.9 8.3 5.8
Metric3D v2F7 39.4 87.7 299 82.6 38.3 75.6 45 3.9
PatchFusion”” 22.6 51.8 499 20.4 14.0 53.6 — —
UniDepth!™*! 276" 53 31.9 83.6 16.5 95.8 5.78 42
ZeroDepth™”! g 9" — 46.5 64.3 12.9 — 8.4 10.5
ZoeDepth™ & 216 34.2 53.8 28.1 7.8 85.7 7.7 5.7
Depth pro"¥ 46.6 415 60.5 49.1 40.0 89.0 — —

TR bR KR et 2 P AR AN T A% D BOR
TG R PR 2 AR T JR) TR L — SO IRy 3813 42,
(EAE QR B v A B 7 TR DA 2, 3 BOR P I A Ak 2
S 2% (0 DS 4 R R WIS DN R R T
BEFEN GO0 51N B OR B 20 o, Q3 G i S 4 kA1
BT B B I A L), AR A B RE % S A RO A SE 2
TR BE AR AL IX L S AN UG 55 1 AR R R S
DX 45k RS S FE 77, B feops B IR B A T AE S B Bt

10 % i +Z5iR Special Issue

YA SRS EE 2 Pl N 7 6 S W R P L W
G R B IR I AR N R S, P
B VRS THRIATR I, #ESh TR R RESR T
Ky TR R AR B E T IR A TR
{32 A B 70 A SE T T B B R 0 0 R 3 S5 47 57 B0
(045 15 1 R R B AN 2 1) Y LR AR RS
J3 SR PR 0 A AR AN Wt b, il A AU e o
RrPE AN 2 REAL 13 S A R, A B A A8 B2 2% A4
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i H AR SN A

BB LS. I, 1o 6 RS R
RSO (T 0 T B ekl R R MOE %
HA 2 WP A SR SR BUR B IO TR 15 . BEAh, &
PR 55 TSR (0 A (8 P 08 S S R M4 40 A
o2 REE, A RGRT T BURE 2 Uk S A 0. 9,
S 3o 8 0 48 37 TR S SR, B R
TR AR P A B 1) 2 R 0 D0 S B4 1 2 S,
767K 753 5t LA — B M R B0 K B it T
VAR T VR P A R 0 U 2R R, R R
S5 IR T SIS

7 O B\ VR BE A T K T
i 1A . 02K B PR R AR AL SR 25
PRI R, 0545V BE 1 R 05 6 4045 LR 42—
1 2 ) H A5 ~F- 7. 451401, Marigold 1 GeoWizard 7E & 44
00 J LT 4 R A R L €, R A PRI 5
55 I S L35 W 00 AT, 2 I U R L £ 55 1
11 4R ELAIAR. AN DM 617 7 k38 i R
VR I 2 BOL AR S N, TSR T R R HL
ST VR RE SR SR, 3 B T T R 7 %
BEA 57 R OV AR ). 35526 2 PRk T v 0 S A
SRR AT At T T ER AR 7 T 46 A
R 2 B e AR P BER P L e B
T, 5L 2 25 4 RN 25 8 RS 0 D0 E R W,
{5 FL 7 A A il 2 4880 5 R T 46 2, ok e
FEARE T AR .

B — AR 1 B R A A8 2 0 5
TREARVRIE (T, 2R R (0 B ST 4

R IUAETEA i Bl A 22 T e 70, R IEIZ0 AL

AR LI S5t S TR AR B 9 6 7. 49 1, Zoe-
Depth 1 UniDepth 24 {5843 14 1o 46 444 1) 1397
VIR SFE WS £ 403, ST % gt o R s R P . 1
BETF AN R THSOR 1P, th R T
X RELI R IE R RE 1. R AR TR R 5
Bt fotn, BREA L FURBEAS T R €, R
T SEBLIE = e 8.

KRG I T 1045 BN . B
PR RO L. BRI I, 2 A4 ik
2 (R AR R, LU AL S P (7R, G54 8
VCHESLIf) 5 2P 5 2 Bk 0 40 R B ), T
PR 78R S 1 2 A T, 3 B 2
[ IE R 2 = RIS B, A BE) 332 7 532

H 358 5 A R, B9F 9 LA — SO 24 3 008 A 77 2
AR I 5 S 2 0 PRI = 4 T T 55 o p KB
IRt SOl VT T, 35— BT A O 0 L9
U REPE, (RIS 5O SR 0, RR Rt
AT | . SO, R A AR 5 B S MR
A S, e 0 T 5 4 MR PR R DR A58,
SRR A

Ut K, R P A B I 95 S
KRN R 5 T S AR R BRI R R
MR R LB R R 6 SR8 357, 70 A 52
F 1555 7 iy A P AR 52 = 437 5 L0 %
VRS 5 Th 2R 50 WA TE 38 P L0 — SO 1 2
RN, TR A YRR A R i 5
LML 5 = e b SR AR 25 R R M BT

SE 30
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