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Survey on Application of Deep Learning in Intracranial Hemorrhage CT Image Segmentation

LIU Shuo, MAO Tian-Chi, SUN Xing, LI Yang, CAI Xiao-Hong, MA Jin-Gang
(School of Medical Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, China)

Abstract: Intracranial hemorrhage (ICH) represents one of the most common and severe emergencies in clinical practice,
with notably high rates of mortality and disability. In the field of medical image analysis, the rapid advancement of deep
learning techniques has provided robust support for ICH segmentation tasks. This study systerﬁatibally reviews the
primary publicly available datasets and evaluation metrics for ICH segmentation ‘and provides asecomprehensive overview
of deep learning-based segmentation methods. Covered approaches include convé)lutional neural network (CNN) models,
U-Net and its improved variants, along with other emerging deep learning techniques. The main improvement strategies
of these models are summarized, and critical challenges encountefed during the segmentation process are analyzed.
Finally, major open issues in current research are discussed, and potential future research directions and possible solutions
are outlined. i
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JFi 9 I (intraparenchymal hemorrhage, IPH). ixi =
Hi 1ML (intraventricular hemorrhage, IVH). & i~ H i
(epidural hemorrhage, EDH). 1 £~ tH Ifl (subdural
hemorrhage, SDH) FH#k } [l T i tH Ifil (subarachnoid
hemorrhage, SAH)"™. 7E 75 L300, PR . vHEAff 1 e fir
AT 3 At L AL, S0 Tl PR = A= 1) 7€ & BRIR YT U7 %
PRSI R A s R TS HoA S o E B P,

*F41 CT (noncontrast computed tomography, NCCT),
XRRARXT 3G s i+ SLALIKTZ 435, 2 H A2 W ICH e
e g 7 R ARG T X Sk iU
PR AR ARG 34, NCCT |z M A TR &2
FE R A . 5HEHEIR 1% (magnetic resonance
imaging, MRI) A, NCCT 7£ ICH f#)-5- 3057 25 A1 3EA%
T B LS, eGSR E R R 1 Ris s,
TEAE SRz it FE v, G 450 R O R BE AR i I 52 A 43
BF CT U1, At St I ICH 2 A7 15, Hoxd th i
e ﬁﬁ*ﬂ%*ﬂjﬂ’iﬂﬂz%. SR, 3X M2 W 7 At
RAMFE SR, JFFHREKR A, S s K2 AR
VIR, 5 81 RIS W57, %2 5012 0 R
FE BRI GRUE A PR s Hi X, = ok B A s LT,
XA 12 W7 75 20T RG22 A 12
ANRIT B K. B, 51\ ot & B AR B 3 40 E)
FORAT LU I RIZ W iR A R8CCRE. | 3k 7 BIAMY g
B RE HEARIC I X35, BB R AR 4 T B4R 93 KL AR AE, 3
R 25 A A2 T 18], A 3 I R SO0 S A (A

FIAET CT EBUR I ICH Z F1 38 & 4O/ T 6 &
T, AR XA RO o I X

Jrik BORVE SR B, A e SR AF N RIS, B |

BRI R BRYE. 56, oGt Ur ik BERIN L1,
TN BOHRX IR, EE?‘JJZZ‘@-*{HEF?)\EH, HE
JEN SR AT AR B WM AL 2D B, LU E
L DB T3 %88 N 5 S KUB AL, S 807
LRI ARE IR LA, MRG0T IRk Z B 22 ST RE,
To i N EHE B B 3h 5 B AL, A 5 52 2 BB g
Py R kA R 2R Pk B R, AT 3 2L
GrENR IR, M LA R IR 7R AL 2 R, TR
IR TR AR, B 538 i Kot Il 25
H 82 ) S MR RS, 5 v 73 1 ARORS 1 RE R 65 P 1.
[RIIF, IR P ST A 45 22 ROBEHFAERR &« ERT)
WL &6 Semg, 8 HAE B A% ICH St FRIUEAR. Uk,
ST IR 2T B B0 U5 Y ICH 73 17T
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ER Wi

T, [ P 48 O — 23k 1 SO T (B 45
TAEHEAT T B B4 4. Shi 28 AU Vi225k 2 55 [F
T ICH S BT S H R IR, MEG 7 IR 3 ST R,
VRN T IR R 2 S B LG T . ST
BT E T S M, (L S8 (VR P 2 SR M A
S/ Hu 25 AU VB 5k T3 3o 255 O W7 V0 T P
2 STE TCH KoMl 4 300 PRI 1k, b 26 2 e, ek
PEFN Dice RE BIAF] 0.89 F 0,84, 4TI, 2F 90 %
BRAET HRAZL M4 (convolutional neural network,
CNN) Al U-Net #8780, it Hoft T 1 2 > B R 20>
Zarei % NV 233 R4 T VR 1 2% SIAE ICH 471
PO PR, S 25 MR T U-Net S 3UAS ()
(IR, 424 Dice REGLF] 0.85. S & VEANFIR T %
AR LR SRR T L R PR
F, HEERIT T TALER v 45k R ORI R ML
St 43 R (R BT, A L P AT R AT, (R
SEAE T U-Net BT, St 30 A I B 25 5T BB b I\
i, BT L R, AR Gid T TR ST
ICH #1771k, WL 4 M 45 (40 CNN Al U-Net) J 3
SRR DL R BB IR FE & 2] 4244 (W Swin Trans-
former' VR 5> | — PIRLRL 0T 3EXHHF 75 1715 1 5
1) ST R 55 5 00T, R e T A 7 R A7
ERPER LR TR g | |

1P AT B S

A R P I TR 11 4 TSR AT R G5 4h
ST, BT TR T ICH 48102 TF RO R R
TR, — LR 71 1 R AE A I 15 533 A TR R 4 b
AT AN LA S 4 BIME 55 (0 73R . BEAh, 550k s
TR 9 0 3 0 T 3o e 1 15 43 B4 4
VIR AN (B0 SB[, AR 78 A4 45 ICH 481
ONTFE O S (0 TR B, S 5 533 2 FF Hcde 5 th— O
HEAT TRELANL M. 1 S T IR MR 4 4
By FIHE CT ¥, 5 AU SR IUb AL

e CQ500 % #E 4 1 Chilamkurthy 25 AU'SIE 2018
CE B, A5 491 ISR E ELRE 6 AU R oL AR B 3
S CT 34, FE R T IR IR E % ) Bk AE fa il ICH
T S 53 77 T RO 65, R 35 5 R L ICH KT 45
T3 H 3 44 Y VR IO RHEE AR B ST VR A, SR8 2 35
I 5 B SRR, LB AR AR S £ T 4
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HiEk & CTHE R

SREC L

CQ500 2018 491

I ATFICH CTHIRE, |2 1 T 5 R UG .

https://opendatalab.com/OpenDatalLab/CQ500

ZHHM. ZREARICH CTHIRSE, W2 FEROE https://www.kaggle.com/c/rsna-intracranial-hemorrhage-

RSNA 2020 25312 _ .
bR e,

detection

BHX 2020 491

ETCQ500HRAEIY i, 65 5 i B AL FHEARIE.

https://physionet.org/content/bhx-brain-bounding-box/

1o /NS IC A 48, 4327 K B by 12 4915k U Fr

PhysioNet 2020 82

https://physionet.org/content/ct-ich/1.3.1/

i T ICH R R0 43 ).
INSTANCE 2023 200 HEAEXTICHRI3D 7> BBk AR SR 4, vE 25 % 17 7 PEEIR
2022 AT A3 i .

https://instance.grand-challenge.org

T 16 A FRARE 7 5 ICH 2> B 4, iR~ =2 5

MBH-Seg 2025 2192 o bmo Mokl B AR .

https://huggingface.c@(dafa,sets/mbhseg

e RSNA H#iE 4" Bk 38 75U % 4 (Radiological
Society of North America, RSNA) 5 3 [H #1 & il i) 2~

4> (American Society of Neuroradiology, ASNR) T

2020 FEECE AU, A2 A, 2 E R KB E
£, T 38 ICH Rl o 7t lZﬁ?ﬁ%@ﬁ%é 3 KM
FIF) 25312 6] CT $348, Mitskid 87 ik E &, H
F T I 2R A0S0 AT RO 21 784 191, 3 528 451 I T- It %
YR A o 2 MR R AN 5 A E bRl BB REAR, AR
T RS SR ) 5 A 1.

e BHX (brain hemorrhage extended) (#5 %E th
Reis 55 NPUE 2020 454, /& CQS500 Kt SE Y 't
FRA, L £ 23409 5K R 39668 AMFRIEIL FHE. FRiE
KHFSAnE BV R IR AN E BT i) 77 2, B3
T PRERCR S B, B ER RV . &Y A
MRHALGE RV v 3 FpRAS, & T 2 it 8 75 oK.

e PhysioNet (4 % 1 Hssayeni 25 AT 2020 4£
KA, BAEN ICH R 5 75 8 B 73 i 2 T 21 U

RO B 82 PR IER L B CT 4%, i1 2491

SRR, H 44 BRSO A R A il i IR ST B A
7, B DL NIFTI A1 JPG &iﬁé&%f@%ﬁﬁé CT Ef%
H > BIHEREL, A K 4L TR 50 Hilla B0 BR B,
FA w5 (R R R MRS B8 1 45 1) 40 2.

e INSTANCE 2022 ¥#i 4 th Li % A4 2023 4
RAR, FEEA AT 3D eI R H CT K& ICH 4%
HEE. BUREAS 200 7 CT B, K 100 HIH T
W%k, 30 %1 F580E, 70 1 F T8, BUER A NIfTI
1A, TR Y  BRAEE N 512%512, R F
4 0.42 mmx0.42 mmx5 mm, FLRIH Y] A BE AR
20-70 5k 2 8. iZEEE N ICH 43 B HIE R IF R AEL
B T g — AT &

o MBH-Seg ML H Wang 28 NPT 2025 4
HEHA ICH 20 H B eBe K 42, 2 H AT &) ICH 73
FUHOR S MR B A 2192 4 3D BA HER
CT AR, BANAREE 24-40 5K 512x512 B &N
YA, Hod 192 MR BA GRS brE, Ha 2000 4
SRR AT IRVE. AR I ZRER 96 5. SRk
£ 48 B FNIREE 48 B, 1% B0HE 52 S R IR B 22 S AT
%%, EH TN RAE RV ES R B ICH 473 & 2.

2 W ER

FEFRA I CT BRI R eh, YA 4 bR i A
PERER B 2 TR, W HRITFM FR bR A5 Dice 3L (Dice
similarity coefficient, DSC)~ i#‘tlﬁ (}intersection over
union, foU). “F¥J5Z Lt (mean intersection over union,
mloU) LA} Hall‘s‘dorfyf‘EEF"’i—i‘ (H:lusdorff distance, HD).
g B A BTG B T 1CH BRI
AR, DI 5T T 32508 TARRHERI 28 R TH A (area
under the curve, AUC) FI4 N #5& R %L (intraclass
correlation coefficient, ICC) X NN FEFx.

N T S b PR X e AR bR, 3P e T LR
2% TP (true positive) 7~ IEAf 73 #1] H 89 BH 15 A X3k,
FP (false positive) &7~ 8 5 73 F A9 kb 11 1E 5 [X 3,
FN (false negative) 7~ A 1A 70 %1 I 98 ko X k. x4
5 XN PR R AR 1T SR At 7 BRI SRR, 3R 2 91
Z6 7 IR Fa bR LA S, FFIER TR R R
EH .

3 RPESE I i 53 E I R A
3.1 CNN
CNN SEAH H H €5 1) 1 3 REAE SRR A 0 A i
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)2 B BR 2 A5 20 T U, 3 st AR ) 45 ) )
TAAZ XA 7 FE ST . ERETSIE N 2D #) 3D R K

B2 R oR, I REi i 45 & Bt 10 2% 28 AL

HOR, Bt 5Tt o BRGS0, Fd it 1 .

K2 A o FIE TR S

PN bR e H A PPN R

Dice = PWET% 1w T 40 ) 5 B S B XS ) SRR B, I AR TR 955 4 o 1) e A

ol = P ORI X 38 5 F S X IR A2 ST A S AR AR R L), F T 974 2 B2 1) e or
YT FP+TP+FN He 7.

N
1
mloU = — loU;
N ; ! PERE.

mloUR T A I UERI P ME, T TR AL 2 R UICH 7 EUE S 4R &

HD(A, B) = max (maxqea minpe s |la — bll, maxpe s mingea lla — bil) I - 6 504 5 5 509530 TR0 S5 HE B9, S R ey it S 2 T PO RS

1
TP FP
AUC=f d( )
o TP+FN \FP+TN

MSB—-MSW

FHT VPSSR AETCHART IR 55 1 ) Sp e PRRE, i W X 4} ICH 5 1E 5 4 ik 7.

ICC= ——F——— R PRAE S T E‘J@uﬁqﬂ%fﬂ'—% B A B AR AR 2 8] ) — B R AT S

MSB + (k— 1)MSW

K1 CNN 45y

Cho % NP R T — Bh IR BE 2% ST B (%48
B PN CNN AN F N 4% (fully convolutional
network, FCN) 4 &, 43l FH T H L) — 43250 5 Fhih
MR 1) 438 BN B i85 CNN X CT U1 ##474]
H o3 R, FIWT e B AFAE tH L B S, PIAS FON fi i 4k
HH I 2R A () K1) 43 I S B A X ) 43 . 5 B — FCN
FHEG, 2R AL 7 I REFE T T 3.44%. IX PP 2 I3k
Wil G AR, $2m T o E A R B,
{ELAE b 3 AS [F) RUBE (1) /0N th L5 ek 5 T AT AR AEAS 2 . %

I, Patel % \POSR HH—Fh £ B 3D 5B 450,

b 2 2 U B R SC0E B AN ORE R, S 4
AR i X 350, ASEPRL R S o1 75 26 6 2 LR,
— B T AR N 4L, 5 — B T A
% R A B UM IE R R 2 AR A 1 4
L5 Dice FREUSKRT 0.90, If FLIZBUHTE A4 gt
RIPHRZHG CT R, (3Re R FFERE 5 HICR.

7E TCH Sy HIBF U, (R R GAFIE A B B T 58
ARG 0 B 5 8, AT BT TR 9 43 RS 1 5 08
SAES. Kuo % APTHR T PatchFCN B, 1% B
Sel B H N DX S R BURE GE, 82 1 FE AR 0F L A g e 7
FRHE T 8 Hh L5 S50 7. 7 2 et UK £ 55
H1, PatchFCN 1) AUC TX ] 1 0.991, Bl MU A+ 5

4 L iteL5ik Special Issue

BI7K. S ARG R AR i A 7 T R AR =, (EL Sy
#| Dice ZH0 0.75, V3 — LRI M, HET
HARH 5E S AniE H 4R, AL Be I AR AEBR ). v T M
PRI e AR TS RO L 0 IE B, Lin 25 ANPSR
THET B 2 ST R0 PatchFCN #E8Y. ABATTRA T
“Noisy Student”J5¥%, 1 6l R BT A A= Dy bR 25,
SR 8 I 2 AR AR G5 G O R A B R L SR VR O gk
AT PRI SR, @I IX —J7V, KRR B S A S THS ARG
ARG AR EE S TR FEEH. & PatchFCN #A
£ CQ500 H#4E E kil AUC Zj 0.939, 53 #| Dice
FHUE 0.829, Bt 15 56 4 M BB 24 1 T RE.
TEAE B HRR RO SR HA1 7 17, ¥ 2% /WU (atten-
tion mechanist) €A T FE (8.5 518K A E-HRE
AT B Xiao 5 NP3 Fix ¥ H i DFMA-ICH
AL, — b5 T AT AR TR Gy ST AL AR FE B Y
ICH 43§77 . 1A R FH R 3% B2 JE N 2% (short-
term dense concatenate network, STDC) £ N T4 14,
Bt £ R 25 A)3E & /7 (multi-scale spatial attention,
MSP) A& 3 & JIHLH (channel attention mechanism)
SR AR A /N 1 I RRAE, A58 P R A A
(dual-pooling attention, DPA) Fl5k 7 Bk PR F2 AT F#1iE
fletk. IR B LA & FEL (mixed feature fusion module,
MFFM) B4 T2 F & 2 RHIE, 18l n] 22 A —
HARTHA R BN FE . DFMA-ICH #8258 i 7 4 %
TR R BEAR T vHSE A S B AR, 8] hnsd 1 4 AL il
S, THHE A4 %  4.87 GFLOPs, HEFLHZ U 0.943 s.
A AR, SR E AN BEEHEN
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R IR R G . AN 1T DEMA-ICH A 1 2
BETERER, e R LT XE BN AR,
Li & NP T —Fh45 4 CNN 5 Transformer (] ICH
Ay EFEA Z AR IE T MobileNetV2 #E4T R FRFIE IR
B, [ A Transformer 4mfd#8i#e 4w b F 0B &,
W AR 288 AR = I B AR 38 45 Gk ok, DARR UL
A X 5l 5 TF  2H 2 TR ASOR 0 5 1 1) . A AR R i N
T U B 73 R 7 8] 4 7 85 AL (atrous spatial pyramid
pooling, ASPP) # R FIRFEFG R AL A ER, DAY 5 %f &2 %
T AL 101 FEFI TR AR (R A 8 7, 72 CQ500 #i#iE £ 1)

Dice ZHUEH] T 0.929.

g5 L RTR, P AR AL IE i g I 4 A AR Ak 2 2K 4y
EIPERE. 2 RE 3D CNN 85506 AN [7] A /N e ()38 o
REJ)\ I E S I IR BRIz A . RS
ERJINLEI R ELAE /N IURFAE, DA J 45 & Transformer
2R B OUE BRI BIPERE. X L8 S R #b
T B — CNN RMTE A R (5 B @ A AE B 2 S E
TEJ TS 2.

A 3L T R T e e R O
JRRPE R, s

e

23 CNN B/ H I B eh BT 7 i 450

SCHR T2 B EIEEES F T R RS EEES
’s PERIR L] A A PIACNNAIPFIANECN, )ﬂﬂ:mmlﬁﬁdNi&%*ﬁ*ﬁﬂ@mmgiﬁﬁ%ﬁé Dice (0.802
) o N RME R, JA, iee (0.802)
b A2 UL T R R, Gl R R e
BT A AT T 43 . ice (0.
[26] 3D CNN AT Ak s T BT A0 Pl HEAT T 2 Dice (0.910)
% LR PR RS . .
[27] PatchFCN  FA A%t {:iﬂiﬁ%f&% RIS T TESTEITERE LA T E IR, 4UC (0.991), Dice (0.750)
¥ S R EE .

FHE L RSNAHCQS500 31\ “NoisyStudent” >} Wi B3 STHESL, B B i 1 45 75 Sk A I bt 1) 522

[28]

PatchFCN HiEd SRR ARE .

- AUC (0.939), Dice (0.829
1. (0.939), Dice (0.829)

INSTANCE fHFRAVER NG, &R ER, WA R0 M2 B H L Dice (0.860), loU (0.770),

[29] DFMA-ICH

2022%dmdE AR I S 43 FUR L. DI FE IR 22 HD (12.350 mm)
“ CNNZE 24 R — 454 Transformer 5 %2 REECNNAEK, R X SAHRI /> &IVERe BF R TH 0.929 0.871
B0V ransformer €2 H ST At LTBAR A 4 B fingm. Dree 29, mbot 087D

3.2 U-Net
3.2.1  FkRifE U-Net Z2F gz i it

U-Net & —Fl 7z N F B 2 B o 3 1 A5 R
D 268 A, HEAZ O B T 6 R 1 G ) 2% - R 28 L T
T Ik Bk A B TE 1 W R R 2 R AR 2 [ L

JB, AT 42 o 4 ) B 0 415 Ak 2E BE 501 H Ronne-

berger 25 NP2 2015 4E 8 VAR Y LA, U-Net FERE
TR R AP IR S IR 2 5 18 g ) Al R o
B, IR T CTo, MRIS, X6 % RHG AR 5
EME S e R A T VF 2 AR I K, 0 nnU-
Net f1 3D U-Net, 1X 264 Jig gk — D& T+ 7 9 4% 1) 1 B
PERUREFE, 52 7 B 44 BT 5510 75 3RPH. U-Net 45
Mk 2 Fros.

Hssayeni 25 APV e bRt U-Net S FF ICH 4%
|, 3515 7 F3 Dice 7 0.315. ToU )y 0.218 #5545
B UEB T U-Net 78 ICH 43 #|Fr frar 474k, b4k, Hssayeni
& NIETTHR 1 A JF ICH 4y §1 %45 8i——PhysioNet
RS, NIEE bRt 7 HESH R, fEFRHE U-Net
(3L, Arab 25 NP5 N FE B HLA, 32 T CNN-

DS A DL ICH 173 TS B ALK Ay I B8
BUAS RV TR P2 PR W 28 2 4, 38 3 76 2SR A 2 il foe £ A
i db Ak, *ﬁﬂﬁ?%#ﬁ%ﬁtﬁfﬁﬁiT 553 R AN
J:?T%ﬁ%ﬁﬂ%‘%ﬂ M I A RV 2K 1) R 3 6 i AN
#&Fh 1 CNN-DS [/ HRIVERE, & & &4 1 IaAT I ],
I750.74 s. Guerron 25 NP7t — 4046 T U-Net ZE#),
TE A e 4 A TP G e A — 4k JZ A ReLU B0 B #L,
FF 5] N dropout JZ Rt il &, $&H T D-Unet. 5%
4t U-Net AL, D-Unet 7£ 5 2 #0255 R I H 5
5> FIRE BE, 78 T3 28 XIS UER IR 345 1 0.81 1
¥ Dice ZHL, FAEANE IR 4R 11X 5] 0.89 H)-F I
Dice ¥, JB7n T HEMIZ L AE S, Coorens 2 AP*1
Jf WA 2R BRI N U-Net, [ 1805 H ifi A H i X 35k
PR AN [ AR 1 R 1 2 SRDHS 2, k2 TG G DX 3ons 451 2% 1)
SN, M HE T 5 FI 0B BE. 7E Dice 23008 0.759 1)
0L, AL E 3o B b &5 R 5 N TARES R A
BAYEIE 0.97, I H H 60 H AR S SRR 7). 280,
HHE A ISR R A AN~ ) AE — e R T IR
W7 o EURE B I EE— B4R T, NIk, Hoang 25 NP7 H
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PR ZE A 1Y 9B BOR X U-Net BEAT Bk, Y
A GINFR IR, R AR R AT A, R
T2 AR JZ AL () B & 45 AL, I8 B BRE HA iR R
KR AL 5 foe 28 R AL R B 45 A, JE G T R AR R DR AR,
Hoang 55 NiE X ERHEAT T 18 s AL B, L4577 A
FLEEE . SOEEURRE (99 10%) BL AN BT e A% (£5°
A£10°), 78 T INRBAEIEIF M 1 s A1 ) 1]

R, JCHLET R BRSO i ISR, A AR T TR
7 HITERE.

gi bprik, VA B LI Je i ok 51 N IR 2 L
il HH AR DR # O BB DL R R I E S BOR
Xt U-Net BEAT 7 FEOLAL, LA am A AR i 73 H 1
S v AN [F] Y IS A M. 3R 4 T T BRI
R . SO, BRI R AR AE.

1 64 64 128 64 64 2
'Input \: Output
1mage Segmentation
tile =
5 B A & E B
B B & HSE SN &
AIAER S HIEXEX
128 128 256 128
% e <
FLs 2
256 256
>12 22 —> Conv 3x3, ReLU
% .:\;-E: - Copy and crop
o o O Max pool 2x2
N Up-conv 2x2
s =5 Conv 1 X1
2 U-Net 44 + \
FK 4 FRUEFER R U-Net 76/ P H I 53 1) 5 (T 58 Jehesh -
SCHR OBERLAARR HdEsE F Uk \ )@rsa‘r@. VR bR X g
4‘ PhysioNet¥ , . \ 7B RN D0 DI = b
211  Fr#EU-Net . FHEHU-Net b T ICHZ 1. \ﬁ% s Dice (0.315), IoU (0.218)
- | T REIIRA B 1 X 5855 E 47 E
[36] CNN-DS FAHHIEE BN W WA A S s . E;Uﬁﬂ e it . X 53 B 27 Dice (0.840+0.060)

B DUnet e siggmu-Nedk by, il 5.

PhysioNet%{ @it k)T \“‘1% « ReCUEE b $1 Ml dropout/2

X4 L AR A BIRCRE TR, Dice (0.890), IoU (0.860)

N

2 B R R ﬁiﬁzﬁiﬁ: BT B3 NU-Net, STCHIK I $odi 458 5 1 i B 1 B0 (1 53 Dice (0.759),
B8] guNe B PR PR R T PR, HD (2,650 p)
9] HREUNet TYSIONEL s ph s pa A BEHOE KSR, ToU (0.80840.030)

e

322 HEREEMZ U

Kwon 25 AN“42 1 Siamese U-Net #%!, #F U-Net
Gl T Siam R, IE45 A @ B AR 4T ICH 3%,
IZAAY SR FH O S NI 77 2K, K BB CT BUR SRR
Jii S AR 2R 4T X B, I Siam AEBRE 3 TE H A X 4
FIHRFAE %2 3¢ 91 N\ U-Net (K BEERER +, IR ICH
S DX 2B AR L. Nijiati 28 NS 7 2l

6 L i +4k Special Issue

P, BT — I T AR S 0 S R PR R R A S AR A
Sym-TransNet. X FR 4 56 56 F1 R A i 5 45 44 1) 15 48
XA, 5 A ASE Y R A R ) I X 3 5 O A 2R
A RRAE 22 57t 1A 838K Transformer 22445 A\ U-
Net, Hl T4 CT EME Az B B Ol R &, AT 4 5
4 {5 B IAE

AR, WAL ATE I 7E U-Net [ 4mb5 #% A f#AD
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i H AR SN A

AR ER ;I N AR B el R, B 52T T ICH B
FPERE. Xu & AN U Dense U-Net W T ICH
(19 E 2 43 %5 1 i A AR ) 4. 8T TE U-Net (9454
FEAEAL 5] N\ Dense Block, %A HE 5 T 4 1iE4%
R M S ORI ] % . Dense U-Net £ (R AL A2 Bk
1 [=) Bf 384 5 1 4> FIKS FE, £ 3E T IPH. EDH #1 SDH
X3 AR 2R AL 4B, LR IR AN R I AR
Dice ZE57H1i% 0.90 A1 0.86. HE FAL4i 1 ABC/2 J7
111 Dense U-Net 7 H! I 44 AR At 520 i B L T8 w5 ) v
Wi PE AN — 20, 1CC ik 0.998. F T IS0 ek JEL %,
Kothala 2 N4 7 —#h 3T EfficientNet-B7 i fg
A3 [) U-Net 1584 iZ MK EfficientNet-B7 £ i1 U-
Net FIgmida830 5, FIHH G A AR X % IRE

13 4 B HEAT S R AL, AT B2 THASE AL (R S

HUBE /7. Chang %8 \"°V#E £ g U-Net 3£ mliek, K
ResNeSts0 fF % 48, 9F 3L B E 1% /7 (channel
attention) 175 [H] ?E‘%fjﬂﬂﬂz‘ﬂ (space attention) %I U-Net
AT, F2 T All Attention U-Net #8Y. i% 4%
RUTE G 2% 1 5l N 7 I8 v B B, DL 5E S
FEVERRE SR EARRS A h 45 A 1 liE R s
)Y A A, DS 3 B A A PR TR AR S R S 2 4 2%
5256 % W, All Attention U-Net /£ Dice R FAREK T

ResNet50+U-Net F: 26t B SLHL 1 5 31.8% IR T,
R Sl 2 A X 40 SRR A AH AP H L9 b If 3R BT R T
BIFXE ICH CT EUZ I #5228 75 SONUSORI AL 1 ) 2,
Fang 28 NP HY T Beidk 9 AOFNet #55Y  {Z 45 R 75 figt
T 24 R 2 R 25 465 1) v 5] N 4H 2 RRIE (anatomical-
omics feature, AOF) yE = Sk, il it 4= R AT it
1t (global weighted average pooling, GWAP) Fl4:i&
P JZ AR AE SR, /> I 2R3 72 rp IR AE R IEAS 2
MG B LK. F, *ﬁﬂﬁ:ﬁ;l‘%‘%ﬁéﬁﬁ*ﬂﬂf\ﬁ
ZEER, LS S RRE 1) £ 3 AN RIS 6 0, T 8 47 b 97 %o
IR (ot AU 2 1958 Dice RAUAF T 0957,

25 EBTA, Bk EBRIUE AL 7 U-Net 3] A Bl
FRRiLR A2 T 38 BT, A Siamese BEBE . KPRk TESE 1
AR5 Transformer 1454 . Dense Block. Efficient-
Net fahdds I IE = 028 () B I DL & fig
HH ARV R IR, i U-Net B IIE B ICH 73 #4E:
%, X R E T U-Net FISFIEA ISR . &R
SR RE A R T RE R AURE ), B U-Net
HE B2 P R P4 0 3 OK PR I LR ). 2 5 0 EIR B FE I
TR R R DL PR R SR N B AT TIE
A T BL R IR B AR A B R L 2 e R s
£, B RAER D H .

RS AN 2 BT SGIE Y U-Net 7590 P H 40 E1 b (1 7 s g6

SCHR RS o 2 it AL JR B VR bR R g R
_ BN RERAR, 01 25 SRR WO, YR MM IR, PUCER S R, “Dice (0.661+0.133),
[40] Siamese U-Net n X : -
31 5 B BH 7. K hn. ¥ HD (7.031£1.130)
i & Transformer 5 X FR 1 JE 06 MR, SESEFEAK AL ¥ g,
- R e W B . ice (0. .
[41] Sym-TransNet e —— & B R E T Al B A Y Dice (0.716£0.031)
-t NN P3: Dice (0.900+£0.060),
) ESAHZ &I MBI RSEE
[42] Dense U-Net {8 FiDenseNeti¢ i= RHIEAZ 12 54 IE 5/ 1E. ABASALAH, S IR 4hE5: Dice (0.860+0.090),

AHXS FHA. ICC (0.998)

[44] EfficientNet-B7 U-Net JHid EfficientNetsSt R G4 LML ZE 2. /i fUp ik R BT F3 .

Dice (0.730), IoU (0.610)

GINZ P =L, SRR 2 BRI w20 B CTIRME I In 7 B g i

45 All Attention U-Net
[45] enlon. Ne EIAE .

R, Dice (0.924)

SIS AETE B IR, ST AN ke = 8 4 26t if 73 115 RE 9 B

L4e] AOTNEL SR 5 B B

. Dice (0.957)

323 YRS A

3D U-Net s& —Fl % 4 B2 5 M 4 BT IR FE 5
SIRERY I U-Net 22449 & 31 = 4404k, B4R
TE TR 2R B 2 BRI o B BE T 12 AL 4R T X
R 11 G L) 25 - AR L) 2% 25 4, 8 3 Bk R T B 1 v 20 R A
6 23 HEERARAE 2 (A1 HEAT A5 B AR 38, AT 38 5 73 K 5
£ 481 — 4k U-Net ML, 3D U-Net J8 i = 4k %5 #1 4

VERD = 4Eith Ak = B 5 ot A 3Rk = 4 2 [ R i R SUE
B, TR 3 H AR SR B M A L N B s
R E Ve AR S, e R & 3 FR.
Abramova % NP B K- (squeeze-and-
excitation, SE) HHt 5] X 3D U-Net 1, X — it 356 1
RRAE IR TE 2 18] ARG &, $ i AR /0N H afiL s AL
I3 HIRE 0. A 70K FH BR M 1~ SRR OR, Kb TR
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Ao PR A 7 A DX 35 P, DAY/ 28 500 AN P48 (1 5 T, 3@
R IVH A8 502800, LvET IPH 40 1. B8
ST ARABAS 6 5B A, I 0 2 A5 2 BR (0 3 Bk
ok P B L e v 1) AR ARRAIE,, X R 5 Y K 25 B
REVRT TRy EIRE I, P Dice REUEH|
0.862. [ifi J5, Zhao % \P"IET 538 B ) nnU-Net HE4E,
FERT —AH T IPH. TVH F it & FElK B (perihema-
tomal edema, PHE) W) =4 H 2} 7 ) 1R AR S A T
AR T R AR A0 4R 1 250 1 R R o] 4 4 A
SRR E, AT 0 X[ e 2546, AITE A
[ ) B2 22 58T 45 BEAL IR Al 3D & N BT AR
THT o BIRERE, IE BB 4000 1 AbERI R, (L BEHETE 15 s
P 58 R S 1 2o B AR AR &

Zhang % AP 2 /LB 31N 3D U-Net, &3k

F ICH K43 BRI ARAL I & i‘z*ﬁiﬂ‘éi@i“iij{%,‘bmﬁﬁﬂi
. "
32 64 N ‘"

‘ 256

3 3D U-Net &5l

. " ]

Fu % A T HGE 2D/3D U-Net (058,
FIF SAH (14 BIRIEAL. B 454 7 — 4 = 4
R A5, R 4B RGP IR E R S 3E B, =
Y 5 R 3R I DX 3 2 )R SOfE U2, AT B 4T
TN SAH U 2 TS HHIE. SAH 0 N2 fcif AL i
M 2K (iR A R AE 3 AN EE 4 B9 ) Dice
RHUE 0.550-0.897, ICC ¥ 0.815-0.957, 54k}
LRI T bR o B — 8, 0AF 1 H AR 4 BR R
A4 H I AR AR 7 T B T SR [EREHE, Qayyum 25 ALY
R 4k 5 = 4k I 25 A 5 A A SR, B T — Ao
o3 EHURE 4 4 BUAH 245 & 00 o B0 7. 1 2k, HEH 2D

8 L il +4iik Special Issue

58 1 3D U-Net X B R X H ¥ ¢, MTT$em 7 ICH
X IR FE A R, e, AR 455 TR e B B DA
SRR FE R4, I 51 NS00 % ek B, A RE R T
ICH 73 i IR AP 1) . et 7R AE CQ500 K¢
Ptk LRIt 6, 5% Dice RECH 0.864, RFRN &
M3 77 M % 2 (root mean square error, RMSE) 4 3.12
mL, ¥ T VNet AfE4E U-Net B4 Lin 26 A3k —
ot TERE PRI, $2H T Viola-Unet, —#
HAUH R ) 3D U-Net *ﬁﬂ_ﬂ.‘vil Unet j#id 7£ 3D
U-Net HIfERS 385 X ':F"‘gl )\“?ﬁlE%ﬁT"ﬂ XA R
B (viola attention module)”, fH A5 71 HE WS i & 15 18
TEALIEAZ 5 F'H_}E"Jﬁ I‘EU???E, T BRI TR AER IR

PPRE . AE AT RS IR AEANFE LR IR E T, AR T

T2 nnU-Net, 37 INSTANCE 2022 ICH 4 1k %
FEMIUET BORTS T 56 1 2B 4.

64+128 64 64

3
128+256 128

256+512 256

Concat
Conv(+BN)+ReLU

' Max pool
Up-conv

» Conv

DenseNet #EATHH 53 #, A w128 (1 73 BIHE I BE S, %
o3 845 FAE NN 2 — A& 25 5T nnU-Net (R4
o3 TR, RS 4 oy SRR F B i 40 KRR —
A A B S X A R EE D7 VA A A R AE R B
HNAK AR 2 [A)IA 3] R4 1R~

Al /ISt L e 1 43 ) — L& TCH 4331 R (M A,
BEXIX— ], Ma 25 AP H T THA-Net. IHA-Net 5
AN TR Z R A A48 (residual hybrid atrous convo-
lution, RHAC) B3, i i 75 A [F] 4w h J2 BiL B A [7] 25 R
R G ARRE, B5R 1 2 R B UE BIHi3REE ),
B7 LB/ g A DX R B 5T SRR T AR AL, AT AT Rk ER
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i H AR SN A

B 7RI AR A, SRR St R R A 2 B AR
PEAG R E, DL AT SR S8R 3R A4 1) B, I8
T 25 2 ) ML) 7 AR R R IR R, 4R T T
R RSO AN BR[O 1 RIS H fil (X
B BRI, Gong 25 AP H T —FhIE 122 2 HE
(1) JR AR AR 3 SR ME B . 1% 7 VA 7E nnU-Net #2421 3D
U-Net #7341, 81 1 % > HE P 3 (learning to rank
module), i it B8 HLEC XS 17 o EUG Bt AT R SRR AE
o, 5 AR T A X 43 th ot 5l O DX 3. AR
FETC 0T I A2 HRaE LN T — Fh N AR AR 42 9 H R
(hard negative mining), {4284 58 £ T~ Mk LLIX 75 1) 474
A, BT T o FIVERE. £E 267 B CT HHEUE b
PS8, AR Y )R IR T nnU-Net, JEH 2 EARTR

/N1 mL BICN LAY 8, Dice ZEGRTE T911.44%.
SYEEE R A RN G ) U-Net 2215 A HE IfiL 4951 b (R RIF 55 s 25

*6

g5 L FTiA, BA L JUSSR 5037 3D U-Net i3I A
BRSO B VRN 2 HE T R 2
AR, LR RFI% 4 2D/3D U-Net (IR &
T, AEHRTE T A EIRE R, R R T BRI
AL NP 67 1 R0 R 005 A 253
VEJT I ). XS4 K45 T 3D U-Net 7E4 42
2 ) bR S £ B RIAL B = 4 B T T RO . SAT, 4b
F S K B AR SRR, TR
NP BRI 4 R IR . BRI, T
RAIE 4 1 B R (R RG2S B 2 10
ety 2. B 6 LIAHITLIN L EEGE B
R4 LA % DR AN RR A 2 AT T I, th T L BT
P 1 5O S LT 38 0 R A SO S, Bt 7 e
il .

SR 1 4 8 O JRI PR VPR R s
s 3D U-Net+' 31 ASEARER, 8 B AE f BME F 3 T i 5 8 A by B o B (1 53 1 2 s 55 Dice (0.86240.074
[50] SEHtER ¥ BERRHR A EIR KK, fee (0.86220.074)
A =B YAV RE 2 el N, i :0. 1 :0.
[51] U-Net %ngnnU Netf] E i R 6 A S50 S P R A S VI T K Dice (IPH 9 920), Dice (IVH:0.790),
HERE. Dice (PHE: 0.710)
[52] ;ZU)JI;;;:J CIPNES-waL K LI E SR TE L FITVHAISDH 43 F 1 fE 555, Dice (0.864), mloU (0.754)
=
) SIAViolaTER IR, s @IEME ke 2 ~
[53] Viola-Unet S I A I SR 2. Dice (0.795), HD (24.038)
“ WA2DAD [ H2DAIBDAEALE G R A4 JRAFAE, B T-SAH, iz A 2 HAh th i 8RR ) Dice (0.550-0.897),
[54] U-Net BB % LS. AR 1GC (0.815-0.957)
s 2D DenseNet+  Z5& MBI SHE 0  BI S, 505 2 B B o> B 07 58 T A 1 0 4 22 & (7], ?'CD' E <0
[53] anU-Net I, T FLAE AL T B S, vce (0.650)
5 7R A A3 IR A RN A A B O W~ ice (0. )
[56] [HA-Net G 22 8 5 2 2 BRI A i M 35 BB 2 b, 1 B e e Dice (0.869+0.064),
. \ ToU (0.774+0.093)
- nnU-Net+ 51N 2) 3 B0 500 J5) B ARFAIE X 20 & 3/ I A, o8 R S 43 B 2R Dice (062320279
BTV e e, Y. fec (0.623:0.279)

e

3.3 HibRa N
#E ICH 5 BIBRFEel W5 LT CNN A U-Net 1)
AR, Ah R 2 SRR R R R B0 H AR AR 95, O ICH
O EUT S B AL T B A AR B AR R 7T ).
Transformer 155 7Y 5% £ 3 5 K 1 4 JR) e AiE 2 B A
H1, FEM AT 55 R85 173z B HPY T Swin Trans-
former L 43 JZ 45 /) RN B R = IALH, E— 2B 4Tt
TR AL R RN A R R AE (¥ R B AE 7357, Rasou-
lian 25 A\ COCU7E 2022 1 2023 4EIOHF 5T R I T 3T
Swin Transformer 155 & ICH 43 %777, 2022 1)
WEFARH T —Fh R 2 24T 5 (B3 ICH i =5 250
£33 R Z Bk B B Tk, S aigs

oy H. SIS R, BT o R o B ik
BIfE 25 5] 0.407 °F3) Dice ZHL, WFHEMR T 25
J7VE1) 0.324, 36F T Swin Transformer VS & 1E = /7
BUHAE 78 A7 5 kb DX 7 T A 250 2023 A2 A Feidk
— YR TIX—HELE, 5l T 48 HGI-SAM (head-wise
gradient-infused self-attention mapping) /5 ¥%. 1% J5 12
T 254F 25| 25 Swin Transformer, {H7E AR BT =
JTEIR BN T 586 A SCIAE B, d@id k& H bR 1)
B BE R 5 AN R = 70 Sk i R A 4 5, SEII T S
i HE 93 b DX $0E 7, 4553 5 Dice REPE 2 0.444,
BEMNT Grad-CAM 55 Ho A 55 i B 7%, WLt 75 35
KW, 3T Transformer f 55 & SE0E A B T7E I8/ bR

B
e
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TR A [F I, el o BV RE. B 155 8B SR, 2B
B Il 7 R AN R S B bR AT B o Bk
FE X175 /1. Rajapakse 2 N2 1T — Rl BB B2 11
Tk, dif T RIA . BUE S s 51 B BRI A
YOLOVS Xf ICH DX It AT 16, Az e A okt i 57
HE; 28 2 By Bt M H % T Swin Transformer f) Trans-
DeepLab #AY, 7E55 1 B B il i) 2 FAE X 38k o 247
Kt o). ZIE R M TS EE R RIE ) FE
P, 73 #| Dice REUEF] 0.769, & E M T H Trans-
DeepLab [1J 5.5 B 7 i2:.

73 E|— )T (segment anything model, SAM) /&
— PR R SR BN R S R B R, SR L AR
ARSI, el RG22 350 SEL T Bk E .

Wang % AU H 7 —Fh 3T SAM BEA ) S 5508 2k

i 7% SAMIHS. %75 VE B 7 SAM 54wt 25
SIS E N E A (parame!ter-refac}oring adapters),
IR T 4 B ARG R R, IR i 3 52 5 M4
1 12 s (1) 2 35 1 AN A V. R Ak, SAMIHS SR — ot
A X HEF7 2% (binary cross-entropy loss, BCE) Fli1 FL 4
&K (boundary-sensitive loss) FfZH 445 2 bR £, 145
AR b FE RSO 120 5 X 35k 1 23 BUAS FE . AHALT Med-
SAM. SAMed. SAMUS. MSA iX£3EF SAM (#1154

W7k, SAMIHS 7E Dice &% AW E MR, &
F)7 0.765. Spiegler & NIt — 5% T YOLO Al
SAM W44, $eh T —Fidk T YOLO A 2 PE1Z
1E SAM )55 158 TICH 43 %177 ik, %07 8 i i
YOLOvS f5 % A i [ ShHE A s 47K, I 45 & AN 1
B IESRIS AL SAM 73 B 45 3. 1% 7775+ 1 YOLO-
SAM HEZEALHE 3 FhAZ4A: YOLO-SAM-BBox. YOLO-
SAM-Point 1 YOLO-SAM-PointBBox, %) ) # Fl ik 5
HESRIR AR DLA PR AL A AT 2 1. T Rl S 56
F W, BT R AR H YOLO-SAM-PointBBox il
fIt, Dice %%ﬁz;‘&o.&a@% T 5 AR O 7 2
wEsE s

“%J:Fﬁ iR, ATT R4S T Transformer A1 SAM 7E ICH
53 FIH IR N R gt S B . Transformer P 58 K (1)
A MR EE /7, Wid 3£ T Swin Transformer H155 /2
BRI R B R AL S T vk, BB BT T 55 M
Mk Re, BT 2 W B il 55 23 50256 10 7 v R I
B EIRERE. BT SAM B3 Itk i 7 v, i
24 EE AL TNC A% A R BUBR U BB, i — P g T
AR LEAR S LU BE R ROR 100 5 X 3 1 7 ) 3R 38 710
BT RV EIEE. EENGE B, RRME DK

PR

7 HARRLAE S H o) BRI AT e A o \
e MR B AE % B B L Ty T
i = - N F
60 Swin-HGI-SAM RSNA 4+ FIFSwin Transformer(f 732 FiE = -HDice R UIBAR, U317 E2L  Dice (0.407+0.225)
[60] Wk PhysioNecHCi sk 1P AIL 4 K25 S5 R . . LKA E,
/ Dice (0.324+0.237)
Swin-HGL.SAM  RSNAKLHif+ Y P R F2D Y F, AR 280R] 4
[61] - PhysioNeti i SN EFR B R SR TH o FIRS FE. FES )P 1 bR S Dice (0.444+0.014)
0 YOLOvS+  BHXHUREE+RSNARI YOLOVS It i [X i A sl iy FHE, 4 S B A I B Fry i S Dice (0.769),
(2] ransDecplLab  CQSOQHEIR  FfTransDeepLabilt (FAETIZAAE.  HEFURFEAEHCHL 10U (0.657)
L - T
o s B PhysiONGUI A SIS ECRIGERCE, SIS B I ) f:és;ﬂfé El’z’ffz;og%)
[64] INSTANCE 2022504 #t 5 B H AR A4 B Pt PR 45 2 . o5, ice
65 VOLO-SAM BHXH R4+ YOLOvV84 & A i A& IE B AR AR AL F 4 ICHY) Jv (AT Dice (0.629), IoU (0.508),
[65] - PhysioNet${fide  1LSAMZ% ), A A AE— R I AUC (0.796)

4 REE55HT

Wi 5 R FEE 2 2 R AE 155 27 52 A5 A B A0 3 ) PR
J&, fUP9 I B R RS T BB R B ST
5 7 35 5 [N, A4t 552 I S P o £ % e ) 42
2 Bl QT W AR A TR AR SR IR AR S 5T, M
T 4 AT s BATARFEE M 738, ST e 15 S5 3

10 % i +Z5iR Special Issue

(1) /IS H g e 1) 1

/I HH LS ek 1 2 TCH 3381 HR i B A AL T
INFIEARFUR N . RHEARB R . LSS, 5 R4
PR EE BE B, A 7 AR 43 0/ 995 A B T I AR
P, b AL, 7N 12 A7 O A P PR A | U AR,
N AN T4 I gk — 2B o T Ay ERG B W T AT
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