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摘　要: 颅内出血 (intracranial hemorrhage, ICH)是临床常见的急危重症之一, 具有极高的死亡率和致残率. 在医学

影像处理领域, 深度学习技术的迅速发展为 ICH分割任务提供了强大的技术支持. 本文系统总结了 ICH分割领域

的主要公开数据集和评价指标, 并对基于深度学习的分割方法进行了全面综述, 涵盖卷积神经网络 (convolutional
neural network, CNN)模型、U-Net及其改进模型, 以及其他新兴的深度学习技术. 重点总结了各类模型的主要改进

思路, 并对 ICH分割过程中遇到的关键问题进行了归纳与分析. 最后, 本文探讨了当前研究中面临的主要挑战, 并
提出了未来可能的研究方向和解决方案.
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Abstract: Intracranial hemorrhage (ICH) represents one of the most common and severe emergencies in clinical practice,
with notably high rates of mortality and disability. In the field of medical image analysis, the rapid advancement of deep
learning techniques has provided robust support for ICH segmentation tasks. This study systematically reviews the
primary publicly available datasets and evaluation metrics for ICH segmentation and provides a comprehensive overview
of deep learning-based segmentation methods. Covered approaches include convolutional neural network (CNN) models,
U-Net and its improved variants, along with other emerging deep learning techniques. The main improvement strategies
of these models are summarized, and critical challenges encountered during the segmentation process are analyzed.
Finally, major open issues in current research are discussed, and potential future research directions and possible solutions
are outlined.
Key words: deep learning; intracranial hemorrhage (ICH); medical image segmentation; computer vision

颅内出血 (intracranial hemorrhage, ICH)是脑卒中

的第二常见亚型, 同时也是临床上常见的急危重症之

一, 具有极高的死亡率和致残率[1]. 据不完全统计, 每年

每 10 万人中约有 25 例 ICH 新发病例, 而在发病后一

个月内的死亡率可达 40%[2], 对患者的生命与健康构成

了严重威胁. 根据出血原因, ICH可分为自发性颅内出

血和外伤性颅内出血[3]. 若患者在早期未能获得及时、

准确的诊断与合理治疗, ICH 可能导致长期瘫痪甚至

死亡, 不仅严重危害了患者的人身安全, 也给社会和病

人家庭带来了沉重负担. ICH主要包括 5种亚型: 脑实
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质内出血 (intraparenchymal hemorrhage, IPH)、脑室内

出血 (intraventricular hemorrhage, IVH)、硬膜外出血

(epidural hemorrhage, EDH)、硬膜下出血 (subdural
hemorrhage, SDH) 和蛛网膜下腔出血 (subarachnoid
hemorrhage, SAH)[4]. 在疾病早期, 快速、准确地定位

和定量分析出血病灶, 对临床医生制定合理治疗方案、

提高诊疗质量和改善患者预后具有至关重要的意义[5].
平扫 CT (noncontrast computed tomography, NCCT),

又称非对比增强计算机断层扫描, 是目前诊断 ICH的首

选成像方式[6]. 凭借成像速度快、对急性出血敏感度高

以及成本相对较低等优势, NCCT广泛应用于临床急诊

和常规检查中.  与磁共振成像 (magnetic resonance
imaging, MRI) 相比, NCCT 在 ICH 的早期筛查和评估

中更具有优势, 尤其适用于需要快速决策的急诊场景[7].
在传统诊断过程中, 有经验的放射科医生通过观察和分

析 CT 切片, 能够快速判断 ICH 是否存在, 并对出血的

范围、位置和体积做出评估. 然而, 这种诊断方式依赖

医生的丰富经验, 并需要长时间、集中地阅读大量影像

切片, 容易引发诊断疲劳, 增加误诊或漏诊的风险[8].
在医疗资源有限的偏远地区, 缺乏专业医生的情况下,
这种依赖人工的诊断方式可能无法满足患者及时诊断

和治疗的需求. 因此, 引入高质量的病灶影像自动分割

技术可以为临床诊断提供有效支持. 自动化分割不仅能

够精准标记出血区域, 协助医生全面掌握病灶特征, 还
能显著缩短诊断时间, 具有重要的临床研究和应用价值.

早期基于 CT图像的 ICH分割通常依赖于无监督

方法, 如阈值法[9]、区域生长[10]与聚类分析[11]等. 这些

方法虽然计算简单, 在一定条件下具有优势, 但也存在

较大的局限性. 首先, 传统方法高度依赖人工干预, 需
要人为选择阈值、感兴趣区域, 或初始化种子点, 且在

送入算法前往往需要额外的预处理步骤, 以减少非出

血区域的干扰. 这些人为设定的参数较难优化, 导致方

法的泛化能力较差. 此外, 传统方法缺乏自主学习能力,
无法从数据中自动提取高级特征 ,  容易受到图像噪

声、对比度变化、病灶形态复杂性的影响, 从而导致

分割误差较大, 难以满足临床需求[12]. 相比之下, 深度

学习方法无需人工提取图像特征, 能够通过数据训练

自动学习最优特征表达, 提高分割的精准度和鲁棒性.
同时, 深度学习模型可结合多尺度特征融合、注意力

机制等策略, 使其在复杂 ICH 场景下表现更优. 因此,
基于深度学习的自动分割方法逐渐成为 ICH分割研究

的主流方向.
目前, 国内外已有一些综述论文对该领域的研究

工作进行了整理和分析. Shi 等人[13]的综述系统回顾

了 ICH分割任务的发展, 从传统方法到深度学习技术,
详细总结了主流深度学习模型及其改进方向. 文章覆

盖范围广、结构清晰, 但总结的深度学习模型数量相

对较少. Hu等人[14]的综述则通过荟萃分析评估了深度

学习在 ICH 检测、分割和体积量化中的高效性, 敏感

性和 Dice 系数分别达到 0.89 和 0.84. 然而, 该研究主

要聚焦于卷积神经网络 (convolutional neural network,
CNN) 和 U-Net 模型, 对其他深度学习模型探讨较少.
Zarei 等人[15]的综述系统回顾了深度学习在 ICH 分割

中的应用, 通过荟萃分析评估了 U-Net 及其变体模型

的性能, 综合 Dice 系数达到 0.85. 文章详细列举了各

个模型的结构、评价指标、主要特点、局限性及改进

建议, 并探讨了预处理方法、损失函数和注意力机制

对分割效果的影响. 尽管该综述内容较为全面, 但仍主

要集中于 U-Net 模型, 对其他深度学习模型缺少深入

讨论. 针对以上问题, 本文系统综述了基于深度学习的

ICH分割方法, 涵盖传统网络 (如 CNN和 U-Net)及其

改进模型, 以及最新的深度学习架构 (如 Swin Trans-
former[16]和“分割一切模型”[17]), 并对研究中存在的关

键问题进行总结与分析, 最后讨论了本领域研究中存

在的挑战以及可能的解决途径.

 1   颅内出血公开数据集

本节对颅内出血领域的公开数据集进行系统归纳

与分析. 由于专门用于 ICH 分割的公开数据集数量较

为有限, 一些研究者选择在检测与分类公开数据集上

进行额外标注以满足分割任务的需求. 此外, 部分半监

督和弱监督的分割模型也将这些检测与分类数据集用

作训练和验证的数据来源. 因此, 本节在总结 ICH分割

公开数据集的同时, 对检测与分类公开数据集也一并

进行了梳理和汇总 .  表 1 中总结了这些数据集的年

份、扫描 CT数量、特点及获取地址.
● CQ500 数据集由 Chilamkurthy 等人[18]在 2018

年创建, 包含 491例来自印度 6个放射中心的非增强

头部 CT扫描, 主要用于评估深度学习算法在检测 ICH
及相关异常方面的性能, 涵盖 5 种常见 ICH 类型. 每
例扫描由 3名资深放射科医生独立评估, 并通过多数

投票法确定最终标注, 以确保标注质量的可靠性.
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表 1    颅内出血分割和检测公开数据集总结
 

数据集 年份 CT数量 特点 获取地址

CQ500 2018 491 早期的公开ICH CT数据集, 广泛用于算法性能验证. https://opendatalab.com/OpenDataLab/CQ500

RSNA 2020 25 312
多机构、多样本ICH  CT数据集,  涵盖多种扫描仪和国

际患者样本.
https://www.kaggle.com/c/rsna-intracranial-hemorrhage-

detection
BHX 2020 491 基于CQ500数据集的扩展, 包含高质量边界框标注. https://physionet.org/content/bhx-brain-bounding-box/

PhysioNet 2020 82
高质量小规模ICH数据集, 包含精确标注的2 491张切片,
适用于ICH的检测和分割.

https://physionet.org/content/ct-ich/1.3.1/

INSTANCE
2022

2023 200
首个针对ICH的3D分割挑战数据集, 注重各向异性数据

的处理问题.
https://instance.grand-challenge.org

MBH-Seg 2025 2 192
面向有限标注场景的ICH分割数据集,  强调半监督学习

和未标注数据的高效利用.
https://huggingface.co/datasets/mbhseg

 

● RSNA 数据集[19]由北美放射学会 (Radiological

Society of North America, RSNA) 与美国神经放射学

会 (American Society of Neuroradiology, ASNR) 于

2020 年联合创建, 是一个多机构、多国的大规模数据

集, 用于支持 ICH检测研究. 该数据集包含来自 3家机

构的 25 312 例 CT 扫描, 总计超过 87 万张图像, 其中

用于训练和验证的有 21 784 例, 3 528 例用于测试. 该

数据集涵盖多种扫描仪型号和国际化患者样本, 代表

了真实世界中的复杂病例.

● BHX (brain hemorrhage extended) 数据集由

Reis 等人[20]在 2020 年发布, 是 CQ500 数据集的扩展

版本, 包含 23 409张图像和 39 668个标注边界框. 标注

采用手动标注厚切片并外推到薄切片的方式, 显著提

高了标注效率与完整性. 数据集提供厚切片、全切片

和软组织清洁切片 3种版本, 适用于多种研究需求.

● PhysioNet数据集由 Hssayeni等人[21]于 2020年

发布, 旨在为 ICH的检测与分割的研究提供公开资源.

该数据集包含 82例非增强头部 CT扫描, 总计约 2 491

张切片, 由两名资深放射科医生通过共识决策手动标

注, 数据以 NIfTI 和 JPG 格式公开, 包括原始 CT 图像

和分割掩膜, 所有扫描采集于伊拉克 Hilla 教学医院,

具有高质量的标注和精确的空间分辨率.

● INSTANCE 2022数据集由 Li等人[22]于 2023年

发布, 是首个公开的 3D非增强头部 CT图像 ICH分割

数据集. 数据集包含 200 例 CT 图像, 其中 100 例用于

训练, 30 例用于验证, 70 例用于测试. 图像采用 NIfTI

格式存储, 每张切片像素维度为 512×512, 体素分辨率

为 0.42 mm×0.42 mm×5 mm, 单次扫描的切片数量在

20–70 张之间. 该数据集为 ICH 分割算法的开发和比

较提供了统一的测试平台.

● MBH-Seg 数据集是由 Wang 等人[23]于 2025 年

推出的 ICH分割挑战赛数据集, 是目前最新的 ICH分

割数据集. 该数据集总计包含 2  192 个 3D 高分辨率

CT扫描影像, 每个影像包含 24–40张 512×512像素的

切片, 其中 192 个影像具有像素级标注, 其余 2 000 个

影像未进行标注. 标注影像划分为训练集 96例、验证

集 48 例和测试集 48 例. 该数据集支持半监督学习任

务, 适用于研究有限标注场景下的 ICH分割算法.

 2   评价指标

在颅内出血 CT图像分割中, 评价指标是衡量模型

性能的重要工具. 常用的评价指标包括 Dice 系数 (Dice
similarity coefficient, DSC)、交并比 (intersection over

union, IoU)、平均交并比 (mean intersection over union,

mIoU) 以及 Hausdorff 距离 (Hausdorff distance, HD).
由于部分模型在分割的同时兼顾了 ICH检测和血肿体

积测量, 因此还引入了受试者工作特征曲线下面积 (area

under the curve, AUC) 和组内相关系数 (intraclass

correlation coefficient, ICC)这两个评价指标.

为了更好地理解这些指标, 进一步定义了以下概

念: TP (true positive)表示正确分割出的阳性病灶区域,

FP (false positive) 表示被误分割为病灶的正常区域,

FN (false negative) 表示未正确分割的病灶区域. 这些

定义为常用评价指标的计算提供了基础支持. 表 2 列

举了常用的评价指标及其公式, 并明确了每个指标的

适用场景.

 3   深度学习在颅内出血分割上的应用

 3.1   CNN
CNN 凭借其出色的自动特征提取能力和灵活性,
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已广泛应用于医学影像分割领域, 涵盖从解剖结构到

病变区域的分割任务. 它能够适应从 2D到 3D医学图

像的多种需求, 还能通过结合改进的网络架构和优化

技术, 进一步提升分割精度与效率[24]. 其结构如图 1所示.
 
 

表 2    颅内出血分割常用指标总结
 

评价指标及其公式 评价解释

Dice =
2TP

FP+2TP+FN
衡量预测分割与真实分割区域的重叠程度, 反映模型在病灶分割中的准确性.

IoU =
TP

FP+TP+FN
表示预测区域与真实区域的交集面积占并集面积的比例,  用于评估分割模型的定位

能力.

mIoU =
1
N

N∑
i=1

IoUi
mIoU是所有类别IoU值的平均值,  用于评价模型在多种类型ICH分割任务中的综合

性能.

HD(A,B) =max(maxa∈A minb∈B ∥a−b∥,maxb∈B mina∈A ∥a−b∥)用于衡量预测边界与真实边界的最大距离, 评估模型在分割边界层面的精度.

AUC =
∫ 1

0

TP
TP+FN

d
( FP

FP+TN

)
用于评估模型在ICH检测任务中的分类性能, 反映模型区分ICH与正常组织的能力.

ICC =
MSB−MSW

MSB+ (k−1)MSW 用于评估模型预测的血肿体积与医生标注体积之间的一致性和可靠性.

 
 
 

卷积层 池化层 卷积层 池化层
全连接
层 输出层 

图 1    CNN结构
 

Cho 等人[25]提出了一种级联深度学习模型, 该模

型由两个 CNN和两个全卷积网络 (fully convolutional

network, FCN) 组成, 分别用于出血的二分类和 5 种出

血类型的分割. 模型首先通过 CNN 对 CT 切片进行初

步分类, 判断是否存在出血; 随后, 两个 FCN负责细化

出血类型的划分并实现病灶区域的分割. 与单一 FCN

相比, 该级联模型的分割性能提升了 3.44%. 这种级联

设计通过整合多模型输出, 提高了分割结果的鲁棒性,

但在处理不同尺度的小出血病灶方面仍存在不足. 对

此, Patel等人[26]提出一种多尺度 3D卷积网络架构, 通

过结合多尺度上下文信息提升分割精度, 更好地适应

不同大小的出血区域. 模型网络架构由两条路径组成,

一条路径用于特征提取和简化, 另一条路径用于融合

多尺度信息以增强特征表达. 模型在多个测试数据集

上的 Dice 系数均大于 0.90, 并且该模型在含有高噪声

和伪影的 CT图像中, 仍能保持稳定的分割效果.

在 ICH 分割研究中, 像素级标注为模型提供了更

为精细的监督信息, 从而提升了模型的分割精度与识

别能力. Kuo 等人[27]提出了 PatchFCN 模型, 该模型通

过提取小区域卷积特征, 提高了在低对比度和高噪声

环境下对出血病灶的识别能力. 在急性出血检测任务

中, PatchFCN 的 AUC 达到了 0.991, 接近放射科专家

的水平. 尽管该模型在精确检测方面表现优异, 但其分

割 Dice 系数为 0.75, 仍有进一步提升的空间, 且由于

其依赖完全标注数据集, 泛化能力也存在限制. 为了解

决这些问题并提升跨数据集的适应性, Lin等人[28]提出

了基于半监督学习的改进 PatchFCN模型. 他们采用了

“Noisy Student”方法, 首先训练教师模型生成伪标签,

然后通过学生模型结合伪标签数据和真实标注数据进

行再训练. 通过这一方法, 未标注数据在提升模型精度

和识别率上起到了显著作用. 半监督 PatchFCN 模型

在 CQ500 数据集上的检测 AUC 为 0.939, 分割 Dice
系数达 0.829, 取得了与完全监督模型相当的性能.

在准确捕捉关键区域细节方面, 注意力机制 (atten-

tion mechanism)已成为提升图像分割精度和鲁棒性的

有效手段. Xiao等人[29]基于这一思路提出 DFMA-ICH

模型, 一种基于可变形混合注意力机制和深度监督的

ICH 分割方法. 该模型采用短期密集连接网络 (short-

term dense concatenate network, STDC)作为骨干结构,

通过多尺度空间注意力 (multi-scale spatial attention,

MSP)和通道注意力机制 (channel attention mechanism)

来提取细小的出血特征, 并使用双重池化注意力模块

(dual-pooling attention, DPA)和残差跳跃连接进行特征

优化. 混合特征融合模块 (mixed feature fusion module,

MFFM)整合了低层和高层特征, 通过可变形卷积进一

步提升边界分割的精度. DFMA-ICH 模型通过分组卷

积有效降低了计算和参数成本, 同时加速了模型的收

敛, 计算复杂度为 4.87 GFLOPs, 推理速度仅为 0.943 s.

凭借出色的性能和低成本, 该模型适合部署在中等内
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存大小的临床系统中. 不过由于 DFMA-ICH模型主要

基于卷积结构, 其对全局上下文信息的捕捉仍有限.
Li等人[30]提出了一种结合 CNN与 Transformer的 ICH
分割模型, 该模型通过 MobileNetV2 进行局部特征提

取, 同时利用 Transformer编码器捕捉全局上下文信息,
将卷积网络和注意力机制的优势结合起来, 以解决病

变区域与正常组织间模糊边界的问题. 该模型还加入

了改进的空洞空间金字塔池化 (atrous spatial pyramid
pooling, ASPP)模块和特征精细化模块, 以增强对复杂

病变边界和形状的检测能力, 在 CQ500 数据集上的

Dice 系数达到了 0.929.
综上所述, 以上模型通过级联结构优化分类与分

割性能、多尺度 3D CNN增强对不同大小病灶的适应

能力、半监督学习提升跨数据集的泛化性、使用混合

注意力机制提取细小出血特征, 以及结合 Transformer
捕捉全局上下文信息来优化分割性能. 这些改进弥补

了单一 CNN 架构在全局信息建模和适应复杂病灶特

征方面的不足.
表 3 汇总了上述研究的数据集、主要改进思路、

局限性及评价指标等.
 
 

表 3    CNN在颅内出血分割中的研究总结
 

文献 模型名称 数据集 主要改进思路 局限性 评价指标及结果

[25]
级联深度学习

模型
私有数据集

组合两个CNN和两个FCN, 用于出血的

二元分类和多类型分割.
对边界模糊的出血区域分割能

力有限.
Dice (0.802)

[26] 3D CNN 私有数据集
融合多尺度上下文信息, 通过权重图解

决类别不平衡问题.
需要手动对颅腔进行预先分割. Dice (0.910)

[27] PatchFCN 私有数据集
采用像素级监督, 提高噪声环境下细小

异常的检测能力.
在分割性能上仍存在提升空间. AUC (0.991), Dice (0.750)

[28]
半监督

PatchFCN
RSNA+CQ500

数据集

引入“Noisy Student”半监督学习框架, 增
强模型泛化能力.

模型的计算需求和训练时间显

著增加.
AUC (0.939), Dice (0.829)

[29] DFMA-ICH
INSTANCE
2022数据集

使用混合注意力机制, 结合可变形卷积,
优化出血边界的分割精度.

对形态复杂或分布分散的出血

区域仍存在误差.
Dice (0.860), IoU (0.770),

HD (12.350 mm)

[30]
CNN结合

Transformer
CQ500数据集

结合Transformer与多尺度CNN架构, 优
化复杂出血形状的分割效果.

对SAH的分割性能显著低于其

他类型.
Dice (0.929), mIoU (0.871)

 

 3.2   U-Net
 3.2.1    标准 U-Net架构和轻度改进

U-Net 是一种广泛应用于医学图像分割的全卷积

网络架构, 其核心特点在于对称的编码器-解码器设计,
通过跳跃连接在高分辨率和低分辨率特征之间共享信

息, 从而提高分割精度和细节处理能力[31]. 自 Ronne-
berger 等人[32]在 2015 年首次提出以来, U-Net 凭借其

灵活性和高效性迅速成为医学影像分割领域的基准方

法, 广泛应用于 CT、MRI、X 光等多种影像数据的分

割任务[33]. 它的成功还促使了许多变体的开发, 如 nnU-
Net 和 3D U-Net, 这些扩展进一步提升了网络的适应

性和精度, 满足了更复杂分割任务的需求[34,35]. U-Net结
构如图 2所示.

Hssayeni等人[21]率先将标准 U-Net应用于 ICH分

割, 获得了平均 Dice 为 0.315、IoU 为 0.218的初步结

果, 证明了 U-Net在 ICH分割中的可行性. 此外, Hssayeni
等人还贡献了公开的 ICH 分割数据集——PhysioNet
数据集, 为后续研究提供了重要参考数据. 在标准 U-Net
的基础上, Arab等人[36]引入深度监督机制, 提出了 CNN-

DS模型以优化 ICH的分割精度. 该模型将分割层整合

到不同深度的网络层级, 并通过元素求和生成最终输

出; 此外, 模型在下采样路径中结合了高分辨率特征和

上采样特征映射, 缓解了梯度消失问题. 这些改进不仅

提升了 CNN-DS的分割性能, 还显著缩短了运行时间,
仅需 0.74 s. Guerrón等人[37]进一步优化了 U-Net架构,
通过在收缩路径中增加批归一化层和 ReLU激活函数,
并引入 dropout层来避免过拟合, 提出了 D-Unet. 与传

统 U-Net 相比, D-Unet 在更多轮次训练后表现出更高

的分割精度, 在十折交叉验证的训练中获得了 0.81 的

平均 Dice 系数, 并在外部测试集上达到 0.89 的平均

Dice 系数, 展示了出色的泛化能力. Coorens 等人[38]将

屏蔽损失函数引入 U-Net, 专门针对出血和非出血区域

的不同特性来调整分割精度, 减少无关区域对损失的

影响, 从而提升分割的专注度. 在 Dice 系数为 0.759的
情况下, 模型自动分割血肿结果与人工标注结果的相

似性达 0.97, 表现出出色的出血体积估算能力. 然而,
数据集中出血类别样本的不平衡问题在一定程度上限

制了分割精度的进一步提升. 为此, Hoang等人[39]采用
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残差连接和数据增强技术对 U-Net 进行改进. 该模型

通过引入残差块, 将两个特征矩阵进行融合, 输出综合

浅层和深层特征的融合特征, 并通过跳跃连接将浅层

特征与最终特征映射结合 ,  避免了降维问题 .  此外 ,
Hoang 等人还对图像进行了增强处理, 包括水平和垂

直翻转、亮度调整 (增减 10%) 以及小角度旋转 (±5°
和±10°), 扩充了训练数据集并缓解了数据不平衡的问

题, 尤其针对数量较少的出血类型, 有效提升了模型的

分割性能.
综上所述 ,  以上几项研究通过引入深度监督机

制、批归一化层、屏蔽损失函数以及残差连接等技术

对 U-Net 进行了轻度优化, 以增强模型的分割精度、

提高对不同出血类型的适应性. 表 4 汇总了上述研究

的数据集、主要改进思路、局限性以及评价指标等.
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表 4    标准和轻度改进的 U-Net在颅内出血分割中的研究总结
 

文献 模型名称 数据集 主要改进思路 局限性 评价指标及结果

[21] 标准U-Net
PhysioNet数

据集
率先将U-Net应用于ICH分割.

在骨骼附近的伪影区域易产生假阳

性结果.
Dice (0.315), IoU (0.218)

[36] CNN-DS 私有数据集 引入深度监督机制优化分割精度.
对形状不规则的出血区域分割存在

误差.
Dice (0.840±0.060)

[37] D-Unet
PhysioNet数

据集

通过批归一化、ReLU激活函数和dropout层
增强U-Net架构, 避免过拟合.

对分散的出血区域分割效果有限. Dice (0.890), IoU (0.860)

[38]
屏蔽损失函

数U-Net
私有数据集

将屏蔽损失函数引入U-Net,  针对ICH区域的

特性来调整分割精度.
数据集类别不平衡影响了模型的分

割性能.
Dice (0.759),

HD (2.650 px)

[39] 残差U-Net
PhysioNet数

据集
结合残差连接和数据增强技术. 骨骼附近伪影区域假阳性率较高. IoU (0.808±0.030)

 

 3.2.2    组合增强和多模块改进

Kwon 等人[40]提出 Siamese U-Net 模型, 在 U-Net
中引入了 Siam 模块, 并结合健康模板进行 ICH 分割.
该模型采用配对输入的方式, 将患者的 CT图像与健康

脑部模板进行对比, 通过 Siam模块将二者在出血区域

的特征差异引入 U-Net 的长跳跃连接中, 以突出 ICH
异常区域的卷积特征. Nijiati 等人[41]采用了类似的思

路, 提出了一种基于对称性先验知识的深度学习模型

Sym-TransNet. 对称性先验知识利用脑部结构的自然

对称性, 帮助模型更精确地识别出血区域与正常组织

之间的特征差异. 该模型还将 Transformer架构引入 U-
Net, 用于捕捉 CT图像中的远距离依赖关系, 从而增强

全局信息提取能力.
近年来, 研究者们通过在 U-Net 的编码器和解码
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器部分引入其他模型或模块, 显著提升了 ICH 图像分

割的性能. Xu 等人[42]首次将 Dense U-Net 应用于 ICH
的自动分割与血肿体积的量化. 通过在 U-Net 的编码

器和解码器中引入 Dense Block, 该模型提高了特征传

递效率和参数利用率. Dense U-Net在保持模型轻量化

的同时增强了分割精度, 专注于 IPH、EDH 和 SDH
这 3 种出血类型的分割 ,  在内部和外部测试集上的

Dice 系数分别达 0.90和 0.86. 相较于传统的 ABC/2方
法[43], Dense U-Net在出血体积估算上展现出更高的准

确性和一致性, ICC 达 0.998. 基于类似的改进思路,
Kothala 等人[44]提出了一种基于 EfficientNet-B7 编码

器的 U-Net 模型. 该模型将 EfficientNet-B7 集成到 U-
Net的编码器部分, 利用其复合缩放方法对宽度、深度

和分辨率维度进行等量缩放, 从而提升模型的特征提

取能力. Chang 等人[45]在经典 U-Net 的基础上, 采用

ResNeSt50 作为编码器, 并引入通道注意力 (channel
attention)和空间注意力机制 (space attention)对 U-Net
进行全面优化, 提出了 All Attention U-Net 模型. 该模

型在编码器中引入了通道注意力模块, 以增强类别特

异性特征的提取; 在解码器中结合了通道注意力和空

间注意力模块, 以实现更精确的形状提取和类型分类.
实验表明, All Attention U-Net 在 Dice 系数上相较于

ResNet50+U-Net 基线模型实现了最高 31.8% 的提升,
特别是在区分特征相似的出血病灶时表现尤为突出.
针对 ICH CT图像分割中复杂背景和模糊边界的问题,
Fang 等人[46]提出了改进的 AOFNet 模型. 该模型在解

码器和编码器结构中引入解剖组学特征 (anatomical-
omics feature, AOF)注意力模块, 通过全局加权平均池

化 (global weighted average pooling, GWAP) 和全连

接层优化特征提取, 减少训练过程中因特征表达不足

而导致的信息丢失. 同时, 模型在上下采样过程中加入残

差块, 以提高特征的传递和表示能力, 从而更好地应对

不规则形状的病灶和复杂背景, Dice 系数达到了 0.957.
综上所述, 以上研究通过在 U-Net 中引入创新性

的模块和编码器设计, 如 Siamese 模块、对称性先验

知识与 Transformer 的结合、Dense Block、Efficient-
Net 编码器、通道注意力和空间注意力模块以及解剖

组学特征注意力模块, 使 U-Net 更加适应 ICH 分割任

务. 这些改进改善了 U-Net 的特征传递效率、全局信

息捕捉能力和类别特异性特征提取能力, 展现出 U-Net
框架的灵活性和强大的适应能力. 表 5 对上述研究的

主要改进思路、局限性以及评价指标等内容进行了汇

总, 由于以上研究所使用的数据集几乎均为私有数据

集, 因此未在表中列出.
 
 

表 5    组合增强和多模块改进的 U-Net在颅内出血分割中的研究总结
 

文献 模型名称 主要改进思路 局限性 评价指标及结果

[40] Siamese U-Net
引入健康模板, 通过差异提取异常特征, 减少假

阴性与假阳性.
依赖健康模板, 预处理计算复杂性

增加.
Dice (0.661±0.133),
HD (7.031±1.130)

[41] Sym-TransNet
融合Transformer与对称性先验知识, 增强远程依

赖关系捕捉能力.
参数量显著高于其他对比模型. Dice (0.716±0.031)

[42] Dense U-Net 使用DenseNet提高特征传递与特征重用性.
未包含SAH分割, 外部测试集精度

相对稍低.

内部: Dice (0.900±0.060),
外部: Dice (0.860±0.090),

ICC (0.998)

[44] EfficientNet-B7 U-Net 通过EfficientNet实现复合缩放以优化网络效率. 小出血病灶表现有待提高. Dice (0.730), IoU (0.610)

[45] All Attention U-Net
引入多种注意力机制, 增强对小病灶分割的特征

提取能力.
高分辨率CT图像增加了模型的计

算需求.
Dice (0.924)

[46] AOFNet
引入解剖组学特征注意力模块, 提升对不规则形

状病灶的分割鲁棒性.
缺乏对各类出血分割性能的单独

分析.
Dice (0.957)

 

 3.2.3    三维结构的扩展和改进

3D U-Net是一种专为医学图像分割设计的深度学

习模型, 通过将 U-Net架构扩展到三维数据域, 显著提

升了对复杂医学图像的分割性能[47]. 该模型继承了对

称的编码器-解码器结构, 通过跳跃连接在高分辨率和

低分辨率特征之间进行信息传递, 从而增强分割精度.

与传统的二维 U-Net 相比, 3D U-Net 通过三维卷积操

作和三维池化层能更好地捕获三维空间中的上下文信

息, 在分割目标边界模糊或结构复杂的情况下具有更

高的稳定性和准确性[48,49]. 其结构如图 3所示.

Abramova 等人 [ 50 ]将挤压-激励 (squeeze-and- 

excitation, SE)模块引入 3D U-Net中, 这一改进增强了

特征通道之间的依赖关系, 提高了模型对小出血病灶

的分割能力. 研究采用限制性平衡采样技术, 将补丁采
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样限制在大脑区域内, 以减少类别不平衡的影响, 并通

过将 IVH 视为背景类别, 专注于 IPH 的分割. 研究还

引入对称模态增强技术, 利用大脑左右半球的对称性

来提取更具鲁棒性的图像特征, 这些方法的综合应用

显著提升了模型的分割精度, 使其平均 Dice 系数达到

0.862. 随后, Zhao等人[51]基于自适应的 nnU-Net框架,
开发了一个用于 IPH、IVH和血肿周围水肿 (perihema-
tomal edema, PHE) 的三维自动分割和体积测量模型.
该模型能够根据数据集的特点自动调整网络架构和超

参数设置, 而不依赖于预定义的固定结构, 从而适应不

同的医学影像任务. 模型的这种 3D自适应设计不仅提

升了分割精度, 还显著缩短了处理时间, 使其能够在 15 s
内完成每位患者的分割和体积测量.

Zhang 等人[52]将注意力机制引入 3D U-Net, 专注

于 ICH 的分割和体积测量. 该模型通过注意力机制增

强了 3D U-Net对感兴趣区域的关注, 从而提高了 ICH
分割的精度和灵敏度. 此外, 模型结合深度监督机制以

改善梯度回传, 并引入类别平衡损失函数, 有效缓解了

ICH 分割中的类别不平衡问题. 改进模型在 CQ500 数

据集上表现出色, 分割 Dice 系数为 0.864, 体积测量中

的均方根误差 (root mean square error, RMSE) 为 3.12
mL, 均优于 VNet 和传统 U-Net 模型. Liu 等人[53]进一

步改进了注意力机制的应用, 提出了 Viola-Unet, 一种

新颖且灵活的 3D U-Net 模型. Viola-Unet 通过在 3D
U-Net的解码器分支中引入“沿正交方向交叉的体素注

意模块 (viola attention module)”, 使模型能够融合跨通

道和正交方向的空间特征, 从而有效提升了特征表示

的精度. 在五折交叉验证和在线验证中, 该模型均优于

强基线 nnU-Net, 并在 INSTANCE 2022 ICH分割挑战

赛的验证阶段获得了第 1名的优异成绩.
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图 3    3D U-Net结构

 

Hu 等人[54]提出了一种混合 2D/3D U-Net 的模型,
用于 SAH的分割和量化. 该模型结合了二维和三维卷

积的优点, 利用二维卷积关注平面特征和局部信息, 三
维卷积捕获出血区域的空间上下文信息, 从而更好地

适应 SAH的复杂形态特征. SAH被认为是最难量化的

出血类型, 但该混合模型在 3 个数据集上的分割 Dice
系数达 0.550–0.897, ICC 为 0.815–0.957, 与神经外科

专家的手动标注高度一致, 验证了其在精确分割和量

化出血体积方面的可靠性. 同样地, Qayyum 等人[55]

也采用二维与三维网络相结合的策略, 提出了一种粗

分割和精细分割相结合的分割方法. 首先, 其使用 2D

DenseNet 进行粗分割, 生成初步的分割掩膜; 随后, 将
粗分割结果作为输入之一传递给基于 nnU-Net的精细

分割模型, 精细分割模型利用更高分辨率的特征进一

步细化分割边界. 这种组合处理方法使模型能在精度

和效率之间达到良好的平衡.
微小出血病灶的分割一直是 ICH 分割中的难点,

针对这一问题, Ma等人[56]提出了 IHA-Net. IHA-Net引
入了残差混合空洞卷积 (residual hybrid atrous convo-
lution, RHAC) 模块, 通过在不同编码层配置不同空洞

率的卷积模块, 增强了多尺度上下文信息的捕获能力,
防止微小病灶区域因重复下采样而退化, 从而有效保
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留了病灶的细节. 此外, 模型在训练过程中采用多目标

优化函数, 以应对前景和背景像素的不平衡问题, 并通

过轻量级中间监督机制缓解梯度消失问题, 提升了训

练的稳定性和分割精度. 同样是为了应对微小出血区

域的分割挑战, Gong等人[57]提出了一种基于学习排序

的局部特征增强框架. 该方法在 nnU-Net 框架的 3D
U-Net 部分中, 集成了学习排序模块 (learning to rank
module), 通过随机配对的方式对图像块进行局部特征

增强, 帮助模型更好地区分出血与非出血的区域. 模型

在配对过程中还引入了一种困难负样本挖掘技术

(hard negative mining), 使模型聚焦于难以区分的负样

本, 进一步提升了分割性能. 在 267 例 CT 扫描数据上

的实验中, 该模型的表现优于 nnU-Net, 尤其是在体积

小于 1 mL的微小出血分割中, Dice 系数提升了 11.44%.

综上所述, 以上几项研究通过在 3D U-Net中引入

挤压-激励模块、注意力机制、学习排序模块和残差

混合空洞卷积, 以及采用结合 2D/3D U-Net 的混合网

络方法, 显著提升了分割精度, 同时增强了模型在微小

病灶分割、类别不平衡问题处理和复杂病灶形态适应

性方面的能力. 这些改进充分发挥了 3D U-Net在捕捉

空间上下文信息和处理三维数据方面的优势. 然而, 处
理三维数据需要大量的显存和计算资源, 特别是在输

入分辨率较高或网络深度增加的情况下. 因此, 如何在

保证分割性能的同时降低计算成本, 仍是未来研究的

关键方向之一. 表 6 对上述研究的主要改进思路、局

限性以及评价指标等内容进行了汇总, 由于以上研究

所使用的数据集几乎均为私有数据集, 因此未在表中

列出.
 
 

表 6    三维结构上扩展和改进的 U-Net在颅内出血分割中的研究总结
 

文献 模型名称 主要改进思路 局限性 评价指标及结果

[50]
3D U-Net+
SE模块

引入SE模块, 增加特征依赖性并通过平

衡采样提高分割精度.
光束硬化伪影对模型的分割性能影响

较大.
Dice (0.862±0.074)

[51] nnU-Net
利用nnU-Net的自适应架构和超参数调

整特性.
对硬件资源需求较高, 训练时间较长.

Dice (IPH:0.920), Dice (IVH:0.790),
Dice (PHE: 0.710)

[52]
3D U-Net+
注意力机制

引入注意力机制和类别平衡损失. 对IVH和SDH的分割性能较弱. Dice (0.864), mIoU (0.754)

[53] Viola-Unet
引入Viola注意力模块, 融合跨通道和正

交方向的空间特征.
模型结构较复杂. Dice (0.795), HD (24.038)

[54]
混合2D/3D
U-Net

使用2D和3D卷积结合局部和全局特征,
应对复杂出血形态.

聚焦于SAH, 泛化至其他出血类型能力

有限.
Dice (0.550–0.897),
ICC (0.815–0.957)

[55]
2D DenseNet+

nnU-Net
结合粗分割与精细分割策略, 提高分割

精度.
多阶段分割方案可能增加推理时间 ,
尤其在处理大量数据时.

Dice (0.650)

[56] IHA-Net
引入残差混合空洞卷积和轻量监督策

略.
模型复杂性高, 计算资源需求较大.

Dice (0.869±0.064),
IoU (0.774±0.093)

[57]
nnU-Net+

学习排序模块

引入学习排序模块增强局部特征区分

能力.
专注于小出血病灶, 对大病灶分割效果

提升有限.
Dice (0.623±0.279)

 

 3.3   其他模型

在 ICH 分割研究中, 除了基于 CNN 和 U-Net 的

模型, 其他深度学习模型同样展现出独特优势, 为 ICH

分割任务提供了新的技术路径和研究方向.

Transformer 模型凭借其强大的全局特征建模能

力, 在视觉任务中得到了广泛应用[58], 而 Swin Trans-

former 通过分层结构和滑窗注意力机制, 进一步提升

了模型对局部和全局特征的灵活建模能力[59]. Rasou-

lian 等人[60,61]在 2022 和 2023 年的研究中探讨了基于

Swin Transformer 的弱监督 ICH 分割方法. 2022 年的

研究提出了一种利用分类任务 (包括 ICH 的二分类和

多分类)生成多层次注意力图的方法, 用于实现弱监督

分割. 实验结果表明, 基于二分类的分割方法通过简单

阈值法达到 0.407 的平均 Dice 系数, 显著优于多分类

方法的 0.324, 验证了 Swin Transformer的滑窗注意力

机制在定位病灶区域方面的有效性. 2023 年的研究进

一步扩展了这一框架, 引入了名为 HGI-SAM (head-wise

gradient-infused self-attention mapping)的方法. 该方法

仍基于分类任务训练 Swin Transformer, 但在生成注意

力图时引入了与梯度相关的信息, 通过将目标类别的

梯度权重与不同注意力头的输出相结合, 实现了更加

精准的病灶区域定位, 将分割 Dice 系数提高至 0.444,

显著优于 Grad-CAM 等其他弱监督方法. 两项研究均

表明, 基于 Transformer的弱监督策略有助于在减少标
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注需求的同时, 兼顾分割性能. 除了弱监督策略, 多阶

段方法也展现了其利用不同类型标注信息提高分割精

度的潜力. Rajapakse等人[62]提出了一种两阶段分割的

方法, 结合了检测和分割任务的优势. 第 1 阶段利用

YOLOv5 对 ICH 区域进行检测, 生成包围病灶的边界

框; 第 2 阶段利用基于 Swin Transformer 的 Trans-
DeepLab 模型, 在第 1 阶段检测的边界框区域内进行

精确分割. 该方法充分利用了边界框注释数据的丰富

性, 分割 Dice 系数达到 0.769, 显著优于仅使用 Trans-
DeepLab的单阶段方法.

分割一切模型 (segment anything model, SAM) 是
一种提示驱动的大规模图像分割模型, 支持点、框和

文本提示, 凭借其灵活性在多场景下实现了高效分割[63].
Wang 等人[64]提出了一种基于 SAM 模型的参数高效

微调方法 SAMIHS. 该方法通过在 SAM图像编码器中

引入参数重构适配器 (parameter-refactoring adapters),
利用上下线性投影优化低层特征, 并通过共享参数提

高适配器的灵活性和重用性. 此外, SAMIHS采用二元

交叉熵损失 (binary cross-entropy loss, BCE) 和边界敏

感损失 (boundary-sensitive loss)的组合损失函数, 增强

了低对比度和模糊边界区域的分割精度. 相较于 Med-
SAM、SAMed、SAMUS、MSA 这些基于 SAM 的微

调方法, SAMIHS 在 Dice 系数上具有明显的优势, 达
到了 0.765. Spiegler 等人[65]进一步探索了 YOLO 和

SAM 的结合, 提出了一种基于 YOLO 和不确定性修

正 SAM 的弱监督 ICH 分割方法 .  该方法通过微调

YOLOv8 模型生成自动框和点提示, 并结合不确定性

修正策略优化 SAM 的分割结果. 该方法中的 YOLO-
SAM框架包括 3种变体: YOLO-SAM-BBox、YOLO-
SAM-Point 和 YOLO-SAM-PointBBox, 分别使用边界

框提示、点提示以及两者的组合进行分割. 消融实验

表明, 基于混合提示的 YOLO-SAM-PointBBox表现最

优, Dice 系数达 0.629, 实现了无需精细标注的高效弱

监督分割.
综上所述, 本节总结了 Transformer和 SAM在 ICH

分割中的应用及其改进策略. Transformer 以其强大的

全局特征建模能力, 通过基于 Swin Transformer的分层

建模和梯度权重优化等方法, 显著提升了弱监督分割

的性能, 基于多阶段检测与分割结合的方法也展现出

较高的分割精度. 基于 SAM 的创新性微调方法, 通过

参数重构适配器和边界敏感损失函数, 进一步改善了

模型在低对比度及模糊边界区域的分割效果. 表 7 汇

总了上述研究的数据集、主要改进思路、局限性以及

评价指标等.
 
 

表 7    其他模型在颅内出血分割中的研究总结
 

作者 模型名称 数据集 主要改进思路 局限性 评价指标及结果

[60]
Swin-HGI-SAM

(初版)
RSNA数据集+
PhysioNet数据集

利用Swin  Transformer的分层自注意

力图, 通过分类任务实现弱监督分割.
平均Dice系数较低, 仍存在改

进空间.

二分类分割:
Dice (0.407±0.225)

多分类分割:
Dice (0.324±0.237)

[61]
Swin-HGI-SAM

(改进版)
RSNA数据集+
PhysioNet数据集

引入目标梯度权重提升分割精度.
仅利用2D切片, 未能有效利

用跨切片的上下文空间信息.
Dice (0.444±0.014)

[62]
YOLOv5+

TransDeepLab
BHX数据集+RSNA和

CQ500数据集

YOLOv5检测出血区域生成边界框,
配合TransDeepLab进行精确分割.

分割性能对检测阶段的边界

框质量高度依赖.
Dice (0.769),
IoU (0.657)

[64] SAMIHS
PhysioNet数据集+

INSTANCE 2022数据集

引入参数重构适配器, 结合边界敏感

损失函数优化分割性能.
模型在低对比度区域的分割

性能仍有改进空间.

PhysioNet: Dice (0.698)
INSTANCE 2022: Dice

(0.765)

[65] YOLO-SAM
BHX数据集+

PhysioNet数据集

YOLOv8结合不确定性修正策略优

化SAM分割.
模型在部分ICH切片的检测

能力上存在一定的不足.
Dice (0.629), IoU (0.508),

AUC (0.796)
 

 4   总结与分析

随着深度学习技术在医学影像处理领域的快速发

展, 颅内出血分割技术取得了显著进展. 研究者们在改

进分割方法的同时, 也针对实际应用中的关键问题提

出多种创新策略. 本节将基于近年来的相关研究, 从以

下 4个方面总结具有代表性的方法, 分析其特点与优势.

(1)小出血病灶的分割

小出血病灶分割是 ICH 分割中的关键难点. 由于

小病灶体积较小、特征不明显、边界模糊, 与正常组

织的对比度较低, 现有方法在分割小病灶时面临较大

挑战. 此外, 小出血类型在数据集中的样本占比极低,
类别不平衡问题进一步影响了分割精度. 研究者们提
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出了多种应对策略, 包括通过多尺度特征提取与融合

增强对小病灶的捕获能力, 结合注意力机制提升模型

对目标区域的关注, 以及优化损失函数缓解类别不平

衡问题. 例如, Xiao 等人[29]提出的 DFMA-ICH 模型通

过结合多尺度空间注意力模块与通道注意力模块, 实
现了对小出血病灶特征的多层级捕获与融合. Ma 等
人[56]提出的 IHA-Net采用残差混合空洞卷积模块聚合

多尺度上下文信息以保留小出血病灶的细节, 并通过多

目标优化函数缓解类别不平衡问题. Abramova等人[50]

与 Gong 等人[57]则基于 3D U-Net 进行改进, 分别引入

了 SE模块和学习排序模块, 以增强特征通道间特征的

交互与局部特征判别能力. Abramova等人还采用限制

性平衡采样技术, 以缓解类别不平衡问题, 使模型能够

更精准地捕获小病灶区域, 其平均 Dice 系数达到 0.862.
(2)计算效率与模型复杂度的优化

计算效率和模型复杂度是制约模型实际应用的重

要因素. 为此, 研究者们提出了多种优化策略, 包括分

组卷积、密集连接设计和引入参数适配器等方法, 以
降低计算成本、优化模型效率. 例如, Xiao 等人[29]的

DFMA-ICH 模型通过分组卷积有效降低了计算成本,
推理速度达到 0.943 s, 同时保持了较高的分割性能, 适
用于资源受限的场景. Xu等人[42]基于 Dense U-Net, 利
用密集连接减少特征丢失, 在保持模型轻量化的同时

提高了参数利用率. Wang 等人[64]提出的 SAMIHS 模

型通过参数重构适配器和边界敏感损失函数优化了跨

层特征的重用, 大幅降低了模型复杂度和参数量.
(3)数据集类别不平衡的优化

ICH 因包含 5 种类型, 其数据集中样本分布常存

在不平衡现象, 小类别病灶样本的不足易导致模型敏

感性下降, 并影响整体分割性能. 为应对这一问题, Patel

等人[26]和 Chang等人[45]提出了动态调整小类别病灶权

重的策略. Patel等人的方法是在训练中引入权重映射,

而 Chang 等人则通过 All Attention U-Net 解码器中的

通道注意力机制强化对小类别病灶特征的关注, 从而

缓解类别不平衡问题. Coorens等人[38]采用屏蔽损失函

数, 将非脑部区域的像素置零, 减少背景区域的干扰, 从

而可以专注于脑内区域的分割. Guerrón等人[37]和 Hoang

等人[39]通过调整训练数据的类别分布, 并结合多种数

据增强方法, 有效实现了类别分布的人工平衡, 缓解了

样本不均衡带来的负面影响.

(4)减少标注数据的依赖

在 ICH 分割任务中, 标注数据的获取通常耗时且

成本高. 针对这一问题, 研究者们探索了半监督学习和弱

监督学习方法, 以减少对标注数据的依赖. Lin 等人[28]

基于半监督学习的 PatchFCN模型, 利用少量标注数据

和大量未标注数据进行联合训练, 提升了模型的泛化

能力. Rasoulian 等人[60,61]利用分类任务中的层次化注

意力图生成分割掩膜, 巧妙地将分类模型的注意力信

息转化为分割结果, 从而避免了对像素级标注的需求,
实现弱监督分割. Spiegler 等人[65]则结合 YOLO 边界

框提示与 SAM的初始分割掩膜, 通过不确定性修正策

略, 在无精细标注的条件下获得了与全监督模型接近

的分割性能.

 5   挑战与展望

近年来, 深度学习技术在颅内出血分割领域取得

了显著进展, 但在实际研究和应用中仍然面临一些挑

战. 这些挑战不仅反映了当前技术的局限性, 也为未来

研究指出了方向.
(1)颅内出血分割公开数据集较少

尽管本文综述了 6个公开的 ICH CT图像数据集,
但其中仅有 PhysioNet、INSTANCE 2022和MBH-Seg
这 3个数据集专注于 ICH分割任务, 而且由于MBH-Seg
是 2025年最新发布的数据集, 目前尚无相关文献引用,
其影响力和实际应用价值尚待进一步验证, 但这些数

据集仍为研究者提供了高质量的标注和较全面的评估

基准. CQ500、RSNA 和 BHX 数据集虽然规模较大,
但主要用于 ICH检测和分类任务, 缺少像素级标注. 在
这些数据集上开展分割研究, 研究者需要额外进行手

动标注, 这不仅增加了时间和成本, 还可能导致标注一

致性问题, 影响后续研究结果的可靠性.
(2)公开数据集上的分割 Dice 系数相对较低

近两年的深度学习模型在分割精度上虽有提升,
但能够提升性能的模型大都是使用私有数据集或者采

用公开数据集与私有数据集结合的训练形式. 多个实

验均显示, 模型在公开数据集上的 Dice 系数明显低于

私有数据集. 这种现象可能与模型对特定数据集特性

的依赖性有关, 当训练与验证数据集的分布特征存在

差异时, 模型的泛化性能便受到制约.
(3)同时分割多类别出血困难

目前, 本文所综述的大多数 ICH 分割模型仍采用
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将所有出血类型合并为出血与非出血的二分类分割策

略. 尽管实际临床 CT图像中会出现多种出血类型同时

存在的情况, 但这类复杂样本通常被简化处理, 或在模

型训练过程中未被充分考虑. Xiao等人[29]指出, 现有模

型在应对多种出血类型共存时表现不佳, 尤其是在出

血形态分布复杂、边界模糊或多个出血区域相互重叠

的情况下, 模型分割精度显著下降.
针对以上挑战, 深度学习在 ICH 分割领域的研究

方向有以下展望.
(1) 推动公开数据集的扩展与优化: 未来, 公开数

据集的扩展应着眼于多中心数据的收集与标准化, 涵
盖不同地区和设备类型, 以提高数据的代表性和普适

性; 结合 CT、MRI 等多模态数据, 弥补单一模态的局

限性; 引入灵活的标注机制, 支持边界框、部分像素级

标注等多种形式, 满足弱监督和半监督学习的需求; 制
定统一的标注标准和评价指标, 确保分割结果的可比

性与可信度.
(2) 加强模型的泛化性能: 通过引入多样性增强的

训练策略, 如数据增强技术 (随机旋转、缩放、添加噪

声)模拟不同设备和成像条件, 提升模型对数据分布变

化的鲁棒性. 同时, 混合多数据集训练, 将多个公开数

据集组合使用, 以扩展训练样本的多样性, 缓解数据分

布偏移问题. 利用半监督和弱监督学习方法, 结合 GAN
或对比学习技术[66,67], 挖掘未标注数据的潜在特征, 增
强模型在未知数据上的适应能力.

(3) 探索针对多类别出血的自适应分割策略: 针对

ICH 分割中多类别同时存在的复杂情况, 未来研究应

开发更具灵活性和适应性的模型. 如通过空洞空间金

字塔池化等多尺度特征提取模块, 捕获不同分辨率下

的关键特征, 同时结合动态权重调整机制[68], 根据类别

的重要性和特性优化模型关注重点.
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