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摘　要: 随机抽样一致性 (RANSAC)算法是一种经典的参数估计方法, 常用于影像匹配、影像拼接、三维重建等

计算机视觉任务. 算法首先通过随机抽样最小样本集生成假设, 然后基于此样本集拟合并评价模型参数, 迭代上述

步骤, 直到满足迭代停止条件, 迭代过程中最优拟合模型即为输出结果. 随机抽样一致性算法在处理仅含单模型的

数据集时效果显著, 但是模型拟合的速率受采样过程影响, 且模型精度受模型估计子制约. 为推进随机抽样一致性

技术的发展, 本文对当前主流的随机抽样一致性算法进行了梳理、分析、介绍和总结. 以改进思路为分类标准对现

有文献进行整理: 假设生成时, 通过只采样高质量点或添加几何约束等方法, 提升采样质量; 模型精化时, 聚合多模型

或结合局部优化等方法调整模型参数; 假设验证时, 构建预筛选机制减少错误模型的验证, 降低计算开销. RANSAC
的很多变体通过修改这些细节来提高计算速度和鲁棒性. 本文详细介绍了 RANSAC及其各个变体的实现原理, 并
在公共的数据集上对它们的性能进行定量与定性实验分析, 给出了它们的综合性能评价.
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Abstract: The random sample consensus (RANSAC) algorithm is a classical parameter estimation method widely applied
in computer vision tasks such as image matching, image stitching, and 3D reconstruction. Hypotheses are first generated
by randomly sampling a minimal subset of data points, followed by model fitting and parameter evaluation based on the
sampled subset. These steps are iteratively repeated until the stop criterion is satisfied, with the optimal model obtained
during the process being selected as the final output. RANSAC demonstrates strong performance when handling datasets
containing a single model. However, its fitting speed is influenced by the sampling strategy, and its estimation accuracy is
constrained by the underlying model estimator. To advance the development of RANSAC techniques, this study provides
a comprehensive review, analysis, and summary of main stream RANSAC variants. The existing methods are classified
based on their respective improvement strategies. During hypothesis generation, the sampling quality is enhanced by
selecting high-quality points or incorporating geometric constraints. During model refinement, parameter accuracy is
improved by aggregating multiple models or integrating local optimization techniques. During hypothesis verification,
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pre-screening mechanisms are introduced to filter out incorrect hypotheses, thus reducing computational overhead.
Numerous RANSAC variants achieve increased computational efficiency and robustness through such modifications. This
study details the implementation principles of RANSAC and its variants and conducts both quantitative and qualitative
performance evaluations on public datasets to assess their overall effectiveness.
Key words: random sample consensus (RANSAC) algorithm; estimator; hypothesis testing; model estimation

随机抽样一致性 (random sample consensus,
RANSAC) 算法[1]是一种经典的模型参数估计方法, 常
用于影像匹配、影像拼接、影像融合、三维重建等计

算机视觉任务. 传统的最小二乘法依赖全部数据拟合

模型, 易受噪声和异常值干扰, 导致结果出现偏差. 而
RANSAC 通过随机选取最小样本集生成候选模型, 迭
代验证模型支持度, 动态筛选内点并更新最优解. 这种

“假设-验证”机制能有效剔除离群点, 在含噪声的数据

中仍能保持模型准确性. 作为经典、可靠的模型估计

算法, RANSAC广泛应用于各个领域, 尤其是在特征匹

配中发挥着重要作用, 常用于多视影像的几何变换模

型估计与粗差剔除, 其模型估计性能将直接影响后续

影像拼接、三维重建等过程的精度.
本文对 RANSAC 在特征匹配中的应用进行详细

阐述, 重点梳理各类改进方法的基本思想及改进之处,
分析现有 RANSAC 改进方法存在的局限性及面临的

挑战, 并对未来的研究方向进行展望.

 1   改进分类

本文将 RANSAC 的变体按照改进思路大致分为

3 类: 改进假设生成过程的方法, 改进模型精化过程的

方法, 改进假设验证过程的方法.
第 1类思路通过改进假设生成的过程来提高算法

的效率, 这也是早期大多数学者针对 RANSAC方法的

改进方向. 2005年, Chum等人[2] 提出的逐步采样一致

性算法 (progressive sample consensus, PROSAC) 通过

定义质量函数对特征匹配中每一对特征点进行排序,
从而优先选择高质量点对构建假设模型. PROSAC 利

用匹配点的优先级信息, 有效降低了粗差点的影响, 缩
短了迭代次数, 加速了找到最优模型的过程. Myatt 等
人[3]提出的 N邻近点样本一致性算法 (N-adjacent point
sample consensus, NAPSAC)通过随机选取一个初始点

并在其周围构造一个超球体, 从超球体内选择相邻点

形成样本子集, 以此提高了内点被采样的概率. NAPSAC

利用了几何邻接性假设, 假定内点在局部空间中分布

更密集, 从而在高维数据集下有效提升了模型估计的

准确性. Tordoff 等人[4]提出的引导式最大似然估计样

本一致性算法 (guided maximum likelihood estimation
sample consensus, Guided-MLESAC) 通过利用图像变

换中的匹配先验信息来引导采样过程, 并结合最小二

乘估计以优化模型拟合效果. Rodehorst 等人[5]提出的

遗传算法样本共识 (genetic algorithm sample consensus,
GASAC)将遗传算法引入 RANSAC框架, 通过模拟自

然选择的进化过程优化采样策略, 这种进化式的采样

机制有效地提升了内点的采样概率, 加速了最优模型

的收敛. Brachmann等人[6]提出神经引导的随机抽样一

致性算法 (neural-guided random sample consensus, NG-
RANSAC) 通过引入神经网络, 学习数据中的特征分

布, 优化了 RANSAC 的采样过程. 该方法利用神经网

络对匹配点的内点概率进行预测, 进而指导采样策略,
使得高内点概率的样本被优先选中. 叶锦华等人[7]提出

通过 DBSCAN 算法改进 RANSAC 的初始点选择策

略, 并引入法向量夹角约束优化内点判定准则, 提升了

含噪声点云的平面拟合精度. 车德福等人[8]提出了通过

射线扫描获取有序轮廓点集, 并改进 RANSAC的初始

抽样策略, 同时引入最小二乘拟合和近似直线合并, 提
升了直角建筑物轮廓提取的效率与准确性. 许可可等

人[9]提出基于结构相似的 RANSAC 改进算法. 该算法

采用 BRISK (binary robust invariant scalable keypoints)
算法提取和描述二进制特征点, 用 Hamming距离进行

特征匹配, 借助结构相似性约束剔除误匹配点, 明显

减少算法迭代次数, 提高了算法效率. Fotouhi 等人[10]

提出的基于空间一致性的 RANSAC 算法引入空间一

致性约束, 利用高置信度基准点计算特征点间的距离

比例, 并通过投票机制剔除明显外点, 提升了初始数据

集中的内点率, 减少了无效迭代次数, 在保持精度的同

时将运行时间缩短约 50%, 尤其适用于低内点率场景

下的几何模型估计. 王可等人[11]提出了基于全概率更
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新的改进 RANSAC 算法 (total probability updated
RANSAC, TPSAC). 该算法利用混合分布模型获取测

试样本点的初始概率估计, 基于全概率公式建立评价

准则更新样本概率, 采用逆变映射作为采样策略, 提高

内点抽样概率, 加快算法收敛速度, 从而更高效地获取

准确的模型参数. 樊彦国等人[12]提出了基于 ORB 与

RANSAC 融合改进的图像配准算法. 在 ORB 特征提

取阶段, 采用改进 Harris算子检测特征点, 构建简化金

字塔尺度空间模型, 并用梯度方向直方图计算主方向;
通过构建分块随机取样检测的方式改进了 RANSAC,
利用多区域特征点组合估计变换模型参数. 该方法在

尺度和旋转配准精度得到显著提升. 江洁等人[13]提出

了一种投票式并行 RANSAC 算法. 该算法在假设生

成阶段通过并行采样同时生成多个模型, 让多个模型

并行对同一个数据点投票, 直接判断其是否属于局内

点, 省去了传统方法中根据最佳模型重新筛选数据点

的步骤. 王亚伟等人[14]提出了多变换矩阵 mRANSAC
(multi-RANSAC)算法. 该算法使用多变换矩阵增加匹

配点数, 通过并集法、减集法和自适应内点数阈值法

3种策略保留多个正确匹配点集, 显著提升匹配点提纯

效率. 结果表明, mRANSAC 提纯结果比 RANSAC 方

法多出 60%–300%. 总而言之, 基于假设生成过程的改

进方法可凝练为 3类核心策略: (1) 先验规则引导的确

定性采样: 通过特征质量排序、几何邻域筛选、空间

一致性约束或领域知识构建确定性规则, 优先选择高

置信度样本, 直接提升内点采样概率, 降低迭代次数;
(2) 智能优化与概率驱动: 引入遗传算法、神经网络等

智能方法动态优化采样路径, 或通过全概率更新建立

概率模型, 实现数据驱动的自适应收敛; (3) 并行化与

多假设协同: 采用并行投票或多变换矩阵协同生成多

模型假设, 通过并行验证或协同提纯的方法扩大有效

匹配点集.
第 2类思路中, 由于原始的 RANSAC算法通过最

小二乘获取模型参数, 最终结果易受到噪声的干扰, 许
多学者通过优化模型估计过程来提高精度和鲁棒性.
Torr等人[15]本文提出一种基于 3幅图像三焦点张量的

最大似然估计算法, 该方法通过六点对应初始化、参

数化约束以及结合 RANSAC 鲁棒估计与最大似然优

化的迭代策略, 有效剔除误匹配并精确估计张量参数.
实验结果在合成数据和真实场景图像上验证了算法

的鲁棒性与准确性. Torr 等人[16]提出的最大似然估计

样本一致性算法 (maximum likelihood estimation
sample consensus, MLESAC) 通过将极大似然估计引

入 RANSAC框架, 对模型的内点进行优化评估. MLESAC
通过最大化模型的似然函数来区分内点和外点, 减少

了外点对模型拟合的干扰, 显著提高了模型估计质量

和鲁棒性. Baráth 等人[17]提出的边际化样本共识++算
法 (margizing sample consensus++, MAGSAC++) 通过

高效的计算策略和更强的稳健性, 显著提高了大规模

粗差数据集的估计精度和计算速度. MAGSAC++优化

了内点的选取策略, 并使用更高效的样本采集方式, 面
对大规模粗差时有效提高计算效率. Korman等人[18]提

出的潜在随机抽样一致性算法 (latent random sample
consensus, Latent RANSAC) 引入潜在变量模型, 并通

过合理的假设验证机制增强了 RANSAC 在复杂数据

中的鲁棒性. 该方法能够有效应对具有多种数据分布

的场景, 尤其在处理具有潜在结构或隐藏模式的数据

时表现出更强的适应性. Chum等人[19]提出的局部优化

随机抽样一致性算法 (locally optimized RANSAC, LO-
RANSAC)在每次假设验证后, 使用局部优化策略进一

步精细调整模型参数, 减少了由于粗差或不完全匹配

所带来的影响, 能够在提升鲁棒性的同时加速模型的

估计过程. Le 等人[20]提出的几何约束样本一致性算法

(geometrically constrained sample consensus, GCSAC)
通过引入几何约束来改进样本选择和模型估计的精度.
GCSAC 能够在处理复杂的多模态数据时, 更加精确地

选择符合几何约束的点对, 减少粗差对模型估计的干

扰, 提高了估计精度和计算效率. Niedfeldt等人[21]提出

的递归随机抽样一致性算法 (recursive random sample
consensus, Recursive RANSAC) 采用递归策略处理多

信号参数. 通过逐层细化对信号模型的估计, Recursive
RANSAC能够在多信号场景中有效处理不同参数集合

的组合, 避免了传统 RANSAC在多信号情况下的退化

问题. Cohen 等人[22]提出的似然比检验样本共识算法

(likelihood ratio test sample consensus, LRTSAC) 结合

了似然比检验来联合优化模型参数和噪声水平. LRT-
SAC 通过评估模型的似然比, 能够更加精准地识别内

点, 提高了估计的可靠性和精度. 夏克付等人[23]通过几

何约束剔除初始匹配中的误匹配点, 并在模型精化阶

段引入 LM 算法迭代优化单应矩阵, 将单应矩阵估计

精度提升至 99% 以上, 匹配效率提高约 17%. 张红民

等人[24]提出改进的相邻概率 RANSAC算法, 通过自适
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应调整内点采样概率, 结合模型评价函数估计出临时

模型并得到临时内点集, 再根据内点相邻原则筛选部

分内点进行重采样, 最后采用预检验技术得到最佳模

型参数. 该算法有效减少迭代次数, 从而提高了算法效

率. 总而言之, 基于模型精化过程的改进方法可凝练为

3类核心策略: (1) 概率优化与迭代调参, 通过概率建模

与梯度迭代细化模型参数, 显著降低噪声敏感性; (2) 结
构约束与分层处理, 引入几何约束筛选合理点集, 结合

递归框架分层解耦多目标参数, 避免多模态数据下的

模型退化; (3) 采用边际化采样、自适应概率调整等策

略, 减少冗余迭代, 提高算法效率.

Td,d

Td,d

Td,d Td,d

最后一类思路是通过优化假设检验步骤, 提高算

法的效率. Matas等人[25]提出的带有 测试的随机化

RANSAC 算法 (randomized RANSAC with   test,
RRANSAC- )通过引入 测试来进行初步的假设

验证, 能够在早期阶段筛选出不合格的模型, 减少不必

要的计算和迭代次数. Capel等人[26]提出的带有 Bail-Out
测试的随机化 RANSAC 算法 (randomized RANSAC
with Bail-Out test, RRANSAC-BO)在传统 RANSAC的

基础上引入了一个早期跳出机制. 这个机制通过对当

前假设的评估, 在检测到某些条件不满足时 (例如内点

数量不足或模型不稳定), 提前终止当前的假设验证,
从而减少计算时间. Matas等人[27]提出的带有序贯概率

比检验的随机化 RANSAC算法 (randomized RANSAC
with sequential probability ratio test, RRANSAC-SPRT)
通过序贯概率比检验来优化假设验证过程. SPRT通过

动态评估每个假设的概率, 在逐步生成样本的过程中,
实时判断假设是否有效, 避免无效假设的计算和冗余

的假设验证. 范帅鑫等人[28]借助重投影误差和相对判

别法选择高质量内点, 并采用二分法动态调整阈值优

化本质矩阵筛选, 显著提升了单目系统大尺寸测量中

本质矩阵求解的稳定性与精度. 杨永刚等人[29]通过光

流法与特征点融合提供初始位姿假设, 并在假设验证

阶段采用动态阈值筛选结合最小二乘迭代优化剔除误

匹配点, 最终通过卡尔曼滤波融合多源数据提升模型

质量, 显著提升了无人机视觉 SLAM 的定位精度与实

时性. 李云帆等人[30]提出浮动一致集阈值的 RANSAC
算法. 其通过几何级数收缩阈值, 优先提取大平面后逐

步检测小面片, 避免固定阈值导致的过分割与欠分割

问题. Moisan 等人[31]提出基于反证法的随机抽样一致

性算法 (a contrario RANSAC, AC-RANSAC), 引入 a

∇ ∇

Td,d

∇

contrario 准则自动确定内外点阈值, 替代传统固定阈

值, 并仅从当前最佳模型的内点中采样, 在高外点率场

景中仍能保持高精度. Wei 等人[32]提出了广义可微分

随机样本一致性算法 (general ized different iable
RANSAC,  -RANSAC).  -RANSAC通过引入可微组

件、Gumbel Softmax 采样器和可训练质量函数, 实现

了对 RANSAC全流程的可微化改造. 该算法利用梯度

传播机制优化采样分布, 将学习目标从最佳模型选择

转向最小化随机样本的期望损失, 结合姿态误差与对

极误差等多指标损失函数, 显著提升了精度与效率, 同
时保持了与传统方法相近的运行速度. 周骏等人[33]提

出了基于序贯概率及局部优化随机抽样一致性算法.
该算法在模型检验阶段利用序贯概率检测技术, 随机

抽取少量数据对模型参数预检验, 对通过预检验的模

型才使用全部数据检验; 在模型参数估计时, 采用局部

优化方法提升模型估计精确度. 相较于标准 RANSAC
取得了较大的提升. 孙雪强等人[34]提出一种改进的随

机抽样一致性算法. 该算法计算所有初始匹配点对的

欧氏距离, 按距离升序排序后, 选取前 80% 的匹配点

对构成新样本集, 提高内点比例. 并引入预检验快速舍

弃不合理模型. 实验结果表明, 该算法提高了图像匹配

的精度和效率. 总而言之, 针对假设验证过程的改进方

法可归纳为 3类核心策略: (1) 动态阈值与预检验优化,
通过浮动阈值、自动阈值确定或样本预筛选动态调整

验证标准, 避免固定阈值的过分割 (或欠分割)问题, 提
升模型稳定性; (2) 序贯验证与早期终止, 利用序贯概

率比检验、 测试及 Bail-Out 机制实现渐进式假设

评估, 通过动态截断无效计算, 显著加速验证流程; (3) 可
微化与梯度驱动优化, 以 -RANSAC 为代表, 通过可

微组件与梯度传播机制将传统 RANSAC 改造为可训

练框架, 结合多指标损失函数优化采样分布, 在保持实

时性的同时提升精度.
本文根据 RANSAC算法不同的改进思路, 全面系

统地阐述主流随机抽样一致性算法的研究进展, 以方

便研究人员能够更好地了解随机抽样一致性算法的研

究现状. 部分 RANSAC改进算法的归纳总结见表 1, 由
于 RANSAC 变体过多, 因此不可能将其全部列出, 本
文尽最大努力呈现常见的、经典的与新颖的研究成果.
本文内容组织如下: 标准 RANSAC方法在第 2节中说

明. 标准 RANSAC 的变体将在第 3 节中讨论. 部分

RANSAC变体的实验对比在第 4节中呈现.
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表 1    RANSAC改进算法的归纳总结
 

方法类型 代表算法 核心思想/结论

基于假设

生成

NAPSAC (Myatt等人[3], 2002) 利用空间邻域关系, 在超球体内选取邻接数据点, 提高内点采样概率, 适用于高维数据.

PROSAC (Chum等人[2], 2005) 基于数据点质量排序的非均匀采样, 优先选择高质量点构建模型假设, 提升计算效率.

Guided-MLESAC (Tordoff等人[4], 2005) 在采样阶段引入引导信息优先选择更有可能是内点的样本, 提高采样效率.

GASAC (Rodehorst等人[5], 2006)
引入遗传算法, 通过遗传算法的交叉、变异操作在复杂的模型参数空间中进行全局搜索加

速最优模型的收敛.
SC-RANSAC (Fotouhi等人[10], 2019) 引入空间一致性约束, 通过投票机制剔除明显外点, 提升初始内点率, 提高整体运行效率.

NG-RANSAC (Brachmann等人[6], 2019) 利用神经网络学习数据的分布特征, 预测每个数据点构建正确模型的概率, 指导采样过程.

模型精化

MLESAC (Torr等人[16], 2000) 基于数据概率分布假设, 计算内点概率构建似然函数并最大化确定最优参数.

LO-RANSAC (Chum等人[19], 2003) 基于初始模型内点, 迭代优化模型参数, 加速模型的估计.

AP-RANSAC (张红民等人[24], 2013) 对临时内点集依据内点相邻原则筛选部分内点进行重采样, 有效减少了迭代次数.

LRTSAC (Cohen等人[22], 2015) 引入似然比检验来联合优化模型参数和噪声水平, 提高了估计的可靠性和精度.

GCSAC (Le等人[20], 2018) 引入几何约束来提升样本选择和模型估计的精度.

Latent RANSAC (Korman等人[18], 2018) 能够在恒定时间区间内估计模型, 与数据集规模无关

MSGSAC++ (Baráth等人[17], 2020) 引入新的模型质量评分函数, 并提出Progressive NAPSAC采样器

基于假设

验证

Td,dRRANSAC-  (Matas等人[25], 2004) 通过随机选点初步测试模型, 早期排除劣质假设, 减少验证次数.

RRANSAC-BO (Capel[26], 2005) 定义早期跳出条件: 若当前假设得分无法超越历史最佳, 则提前终止验证.

RRANSAC-SPRT (Matas等人[27], 2005) 基于序贯概率比检验通过似然比动态判断模型有效性, 无需内点比例先验知识.

AC-RANSAC (Moisan等人[31], 2012) 引入反证法准则自动确定阈值, 仅从当前最佳模型的内点中采样.

∇-RANSAC (Wei等人[32], 2023) ∇-RANSAC达成全流程可微化, 优化采样与学习目标, 显著提升模型精度与效率.
 

 2   RANSAC
RANSAC是一种在数据存在噪声和少量异常值的

情况下, 用于模型参数估计的常见算法. 其基本假设是:
数据由“内点”和“外点”构成, 仅内点满足数据中所包含

的模型. 该方法从一组包含“外点”的数据集中, 通过不

断迭代来估计模型的最优参数. 该算法优点在于过程

简单, 具有较强的鲁棒性. RANSAC 的算法流程见算

法 1. RANSAC算法拟合数据的效果见图 1.

算法 1. RANSAC

N U η kmax t输入: 对应点数量为 的集合 ; 置信度 ; 最大迭代次数 ; 阈值 .
θmax I∗输出: 最优模型参数 ; 最终内点集 .

k=0, Imax=0; Imax // 是最大内点数

k<kmax kmaxwhile   do // 是最大迭代次数

m　从数据集中随机采样一个大小为 的最小子集

θk　使用这个最小子集估计模型参数

Ik　计算当前假设模型的内点集

|Ik |>Imax　if   then
θmax=θk , I∗=Ik　　  

kmax　　根据式 (6)更新最大迭代次数

　end if
k=k+1　  

end while

在图像匹配过程中, 由于图像噪声、遮挡以及特

征描述不准确等因素影响, 不可避免地会产生正确匹

配与错误匹配. 在实际应用场景中, RANSAC算法通常

C

借助基本矩阵或单应矩阵来表示两幅图像之间的几何

变换模型. 对于该模型, RANSAC通过随机采样最小数

据集的方式来估计模型参数. 最终, 在返回的最优模型

所对应的点集中, 那些残差超过设定阈值的数据点被

判定为“外点”, 而这些“外点”即为图像匹配中的错误匹

配点. RANSAC的目的是找到最优模型参数, 可以表示

为最大化某个目标函数 . 在参数空间中, 重复选择最

小数据点数量的随机子集并根据每个子集生成模型假

设, 然后使用剩余数据点对每个假设模型进行验证并

给出模型的评分, 返回得分最高的假设作为解决方案.

RANSAC流程图见图 2.

θ ϕ N

Xi,Yi

给定一个具有参数 的未知变换 以及由 个样本

组成的一对数据集 , RANSAC计算:

θ̂ = argmax
θ

N∑
i=1

ρ (d (ϕθ(Xi),Yi)) (1)

d (·, ·) L2 n其中,  表示 距离, 具体如下 ( 为坐标维度):

d(a,b) =

√√√ n∑
j=1

(
a j−b j

)2
(2)

ρ(·)成本函数 在第 2.1节中介绍.

 2.1   目标函数

在标准 RANSAC 框架下, 要最大化的目标函数
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C θk

U
t

被定义为给定模型的支持度. 具体来说, 给定参数

的模型, 其支持度被界定为来自数据集 中残差小于

某一预定义阈值 的数据点的数量. 通过对残差的约束

来筛选出与模型高度一致的数据点, 以此衡量模型的

有效性和可靠性, 而 RANSAC算法的核心目标为找到

能使支持度最大化的模型参数. 因此, 模型的支持度 C
被定义为:

C =
∑

i

ρ(ei) (3)

  

20 内点
外点
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图 1    RANSAC算法拟合数据的效果

ρ(·)成本函数 被定义为:

ρ(ei) =
{

1, for |ei| ⩽ t
0, for |ei| > t

(4)

ei i

i

pi = (xi,yi,zi)

p̂i = (x̂i, ŷi, ẑi)

p′i =
(
x′i ,y

′
i ,z
′
i

)
ei=d

(
p′i , p̂i

)

其中,  可被定义为第 对对应点在特定几何变换 (如单

应性变换)下的重投影误差. 详细来说, 设第 对对应点在

原始空间中的坐标为 , 其在经过几何变换

后, 得到在另一幅图像平面中的预测坐标 ,

实际观测坐标为 , 则残差 , 可得:

ei =

√(
x′i − x̂i

)2
+

(
y′i − ŷi

)2
+

(
z′i − ẑi

)2
(5)

式 (5)可精确衡量对应点在经过模型变换后的预测

位置与实际观测位置之间的偏差程度, 进而在 RANSAC

算法迭代过程中, 通过最小化所有对应点的残差之和

或其他基于残差的目标函数来优化模型参数.
 
 

Input: U, η, kmax, t

Output: θmax, I
*

k

k=k+1

No

No

Yes

Yes

从数据集中随机抽取一个
大小为m的最小子集

更新最大迭代次数kmax

使用该最小子集来估计

k＜kmax?

0, Imax

|Ik|＞Imax?

0

模型参数θ
k

θmax=θk, I*=Ik

 
图 2    RANSAC流程图

 

 2.2   子集大小

最小二乘法等传统回归方法是基于所有数据点进

行计算. 它们假设数据集中的大部分点都符合某种数

学模型, 通过最小化所有数据点到模型的误差之和来

确定模型参数. 这种方法在数据相对干净、异常值较

少的情况下能够得到较好的结果. 然而, 当数据集中存

在大量异常值时, 异常值会对模型产生较大的偏差, 使

模型偏离真实情况, 因为它们对误差计算的贡献与正

常数据点相同, 从而影响模型的准确性和可靠性.

RANSAC 则采取了不同的策略. 它不依赖于所有

数据, 而是通过随机采样最小样本子集来假设模型. 在

每次迭代中, 只关注这些样本子集能否代表真实模型,
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不被异常值所干扰. 例如, 在图像特征匹配中, 如果存

在一些错误匹配的特征点, 传统回归方法可能会因为

这些异常值而得到错误的匹配模型, 而 RANSAC通过

随机抽样, 有可能避开异常值, 找到正确的匹配模型.

这种策略使得 RANSAC 在异常值较多的情况下具有

较强的鲁棒性.

m = 7

RANSAC 的目标是抽取未受污染 (即不包含异常

值) 的样本. 在有异常值的数据集中, 抽取到受污染样

本的概率会随着样本大小的增加而呈指数增长. 如果

样本过大, 其中包含异常值的可能性就会大大增加, 从

而导致估计出的模型参数不准确. 相反, 选择尽可能小

的样本子集, 虽然可能无法完全代表整个数据集, 但可

以降低包含异常值的概率, 更有可能找到符合真实模

型的数据子集, 从而提高模型估计的准确性. 每个子集

的大小是由能够唯一计算模型参数所需的最少数据点

数量决定的. 例如, 基本矩阵是一个 3×3 的矩阵, 且具

有秩为 2的特性. 在齐次坐标下, 它将一幅图像中的点

映射到另一幅图像中的对应极线. 由于其特殊的几何

性质, 基本矩阵有 7个自由度, 需要 7对对应点来求解,
即 .
 2.3   停止准则

N U
m

U

在给定对应点数量为 的集合 中, 随机采取大

小为 的最小子集. 随后用最小子集生成模型假设, 与
中所有点进行验证以确定其支持度, 即符合模型的

点数量. 重复上述步骤, 直至满足终止条件.
η

ε

m εm k

(1−εm)k

1−η k

标准终止准则确保以一定置信度 选到至少一个

无异常值的最小子集. 已知真实内点率为 , 选到含

个内点的无污染样本概率为 , 选到 个均含至少一

个外点的样本集的概率为 . 为使该概率低于

, 迭代次数 满足式 (6):

k ⩾
log(1−η)

log(1−εm)
(6)

η

ε

k ε p = 1−εm

k ε

εm 1−εm

k

k ε

其中, 置信度 通常被设定为 0.95 或 0.99. 在实际应用

中, 内点比例 通常是未知的, 这给预先计算抽样次数

带来了困难. 因为 直接影响到成功概率 ,
进而影响到抽样次数 . 如果数据集中异常值较多,  较

小, 那么 的值会更小,  的值会接近 1, 根据式 (6),
此时 的值会变得非常大. 这意味着需要进行大量的抽

样才能满足置信度要求. 一种方法是使用最坏情况估

计来预先计算 , 例如假设内点比例 非常小 (如 0.1或

ε

ε

更小), 但这种方法可能会导致过度抽样, 增加不必要

的计算量. 更有效的方法是采用自适应停止准则, 即先

根据最坏情况假设初始化 , 然后在算法运行过程中,
根据找到的内点集的大小来更新 . 随着迭代的进行,
如果发现内点数量逐渐增加, 说明实际的内点比例可

能比最初假设的要高, 此时可以适当地减少最大迭代

次数, 从而提高算法的效率.
 2.4   阈值选择

t

t

n

σ

t

n

t α

在 RANSAC 算法中, 阈值 起到判定数据点与模

型支持度的关键作用. 具体而言, 通过计算数据点相对

于模型的残差, 并将其与阈值进行比对, 从而实现对内

点与外点的有效识别. 在常规操作流程中, 往往基于过

往处理同类数据所积累的经验, 或是依据对当前数据

分布的了解, 手动选择一个阈值 . 文献[35]提到阈值选

择的过程可以更正式化. 假设数据点受到具有 个自由

度的高斯噪声干扰, 该噪声均值为 0, 标准差为 . 阈值

用于确定一个数据点是否支持模型. 残差服从自由度

为 的卡方分布, 并且可以利用逆卡方分布来确定一个

阈值 , 该阈值涵盖了占比为 的真实内点:

t2 = χ−1
n (α)σ2 (7)

χ α

α = 0.95

其中,  是累积卡方分布.  是内点比例, 通常设定为 0.95.
因此, 当使用 计算阈值时, 一个真正的内点被

错误拒绝的概率仅为 5%. 不同自由度的卡方分布密度

函数和累积分布函数见图 3.
 2.5   其他鲁棒估计算法

尽管本文的核心关注点主要聚焦于 RANSAC 及

其变体, 但在鲁棒估计算法的领域中, 其他相关算法同

样具有不可忽视的研究价值. 在实际的数据处理场景

中, 尤其是在面对复杂环境下的数据估计任务时, 多种

算法的综合考量往往能够为解决问题提供更为丰富的

视角与有效的策略. 在此, 将简要阐述部分算法.
在控制工程与信号处理领域, 准确估计离散时间

系统的状态至关重要, 但实际系统往往面临噪声方差

不确定的难题. Qi等人 [36]提出了鲁棒稳态卡尔曼估计

器, 其基于极小极大鲁棒估计原理, 结合无偏线性最小

方差 (unbiased minimum-variance linear)[37]最优估计准

则, 充分考虑系统中噪声方差的不确定性. 通过为噪声

方差设定保守上界, 在滤波、预测和平滑等过程中, 依
据系统的状态方程和观测方程, 利用已知的系统矩阵

参数进行复杂计算与优化. 例如, 在计算滤波增益、预
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测误差方差等关键参数时, 借助特定的方程 (如 Riccati
方程和 Lyapunov 方程) 进行推导和求解, 从而实现对

系统状态的精确估计. 即使在噪声方差存在不确定性

的情况下, 依然能够保证估计结果的可靠性和稳定性.
作者还创新性地提出 Lyapunov方程方法来证明估计器

的鲁棒性. 这种方法将鲁棒性的证明转化为对 Lyapunov
方程解的性质研究, 通过严格的数学推导和分析, 为算

法的有效性和稳定性提供了理论依据. 与一些基于经

验或启发式的方法相比, 具有更高的可靠性和科学性.
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度函数曲线和累积分布函数曲线
 

σ σ

LMS (least median of squares regression)[38]估计器

能够容忍多达一半的数据点远离真实估计值, 而不改

变目标函数的最优值. 这意味着, 即使数据中存在大量

异常值, LMS仍有可能找到一个相对合理的估计. 在范

围数据的表面估计中, LMS 及其两种扩展方法 ALKS
(adaptive least K-th order squares)[39]和MUSE (minimum
unbiased scale estimate)[40]在处理相邻表面深度变化方

面表现出一定的优势. 当不连续性幅度小于约 4.5  (

σ

为数据噪声标准差) 时, 能够准确估计表面补丁. 然而,
当不连续性幅度达到 7.5 或更高时, 大多数标准鲁棒

估计技术会出现问题导致表面估计不准确. RANSAC
及其改进版本 (MSAC、MLESAC) 和 LMS 等方法虽

然常用, 但是其依赖于用户提供额外信息 (如噪声尺度

或内点比例), 且这些信息在实际应用中往往难以准确

获取. Chen 等人[41]提出的 pbM (projection-based m-
estimator)通过重新表述M-估计器优化准则, 将其转化

为投影寻踪优化问题, 无需用户提供尺度估计, 可自动

从单变量核密度估计中推导出合适的阈值.

 3   RANSAC变体

本节将以假设生成、模型优化、假设验证这 3个
思路为分类标准, 从这 3 个方面介绍各类经典、新颖

的 RANSAC变体算法.
 3.1   假设生成改进

 3.1.1    PROSAC
区别于 RANSAC的均匀随机采样, PROSAC依据

数据点质量进行非均匀采样. 在图像匹配任务中, 先基

于特征匹配的相似度分数对匹配点对排序, 优先从高

质量匹配点中选取样本构建模型假设, 随迭代推进逐

渐纳入质量稍低的点, 使更可能为内点的样本优先参

与模型估计, 提升计算资源利用效率. 早期优先采样高

质量点生成模型假设, 能快速定位到较优模型, 减少无

效假设检验, 相比 RANSAC在处理大规模数据或复杂

模型时优势明显.
 3.1.2    NAPSAC

该方法基于数据点在空间分布上的特性进行采样.
假设数据点在高维空间中分布, 其中内点倾向于聚集

形成流形结构, 而异常值相对分散. NAPSAC先随机选

一个起始点, 随后在以该点为中心的超球体内搜寻足

够数量的邻接数据点形成样本子集, 超球体半径依据

数据分布特性或先验知识设定, 使采样偏向选取位于

同一流形或相近结构上的内点, 降低异常值入选概率,
提高样本子集质量. NAPSAC 在处理高维模型估计问

题时优势显著, 如在复杂 3D 场景重建中, 面对高维的

点云数据及大量噪声和异常值干扰, 传统方法采样很

难获取优质无异常值样本, NAPSAC 利用空间邻域关

系增加采得内点几率, 提升模型参数估计可靠性.
 3.1.3    Guided-MLESAC

Guided-MLESAC 引入了引导信息来优化模型估
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计过程, 这种引导信息可以是来自先验知识、其他相

关模型或者数据的初步处理结果. 在采样阶段, 不像传

统MLESAC那样完全随机采样, 而是根据引导信息优

先选择那些更有可能是内点的样本. 这样可以提高采

样效率, 使得构建的模型假设更有可能接近真实模型.
在处理大规模数据或者复杂模型时, 这种效率提升尤

为明显. 例如, 在三维重建任务中, 需要从大量的图像

特征点中估计相机位姿和场景结构. Guided-MLESAC
通过利用先验的相机位置估计或者部分可靠的特征点

匹配关系, 能够更快地收敛到准确的模型, 大大缩短计

算时间.
 3.1.4    GASAC

G N

m

GASAC 提出了一种将遗传算法与样本一致性相

结合的创新算法. 遗传算法的核心思想是模拟自然选

择和遗传学的过程, 通过迭代进化生成更优解. 整个基

因库被视作种群 , 其中有 个个体, 每个个体由一条

染色体表示, 每个染色体由 个模型参数编码, 并且收

到交叉和变异算子的影响. 遗传算法的特性使得 GASAC
能够在复杂的模型参数空间中进行全局搜索. 由于其

不依赖于特定的模型假设或数据分布形式, GASAC能

够适应各种不同类型的数据和模型. 遗传算法中的各

个操作 (选择、交叉、变异)以及个体适应度评估都可

以在一定程度上进行并行计算. 这意味着该算法可以

同时对多个个体进行操作和评估, 大大提高了算法的

计算效率.
 3.1.5    NG-RANSAC

NG-RANSAC 利用神经网络来指导 RANSAC 模

型假设的生成. 神经网络预先在相关数据集上进行训

练, 学习数据的分布特征和潜在模式. 在采样阶段, 神
经网络根据输入的数据点, 预测每个数据点构建正确

模型的概率. 在模型估计阶段, NG-RANSAC仍然采用

类似传统 RANSAC 的方式来构建模型. 但同时, 会将

模型估计的结果反馈给神经网络. 神经网络根据反馈

的模型结果和实际数据, 进一步调整数据点重要性的

评估. 这样, 在后续的采样和模型估计过程中, 神经网

络能够提供更准确的引导, 形成一个迭代优化的过程,
使模型估计不断接近最优解. NG-RANSAC 采用最终

估计的内点数作为任务损失函数, 这样不需要额外明

确标注数据. 神经网络能够自动学习数据中的复杂特

征和模式, 这有助于更好地理解数据背后的真实结构.
例如, 在三维重建任务中的点云数据, 神经网络可以学

习到物体的几何形状特征, 引导 RANSAC更精确地估

计物体的三维模型参数.
 3.2   模型精化

 3.2.1    MSAC
与 RANSAC类似, MSAC也是通过随机采样生成

模型假设并验证. 然而, 在判定数据点是否为内点时,
RANSAC 采用固定阈值的方式, 而 MSAC 运用 M 估

计函数来衡量数据点与模型的契合程度. M 估计函数

是一种鲁棒的代价函数, 对离群值赋予较小权重, 对符

合模型的数据点给予较大权重, 以此降低异常值对模

型估计的干扰. 在处理含较多噪声或异常值的数据时

表现卓越. 比如在图像匹配任务中, 面对大量误匹配点,
MSAC能凭借M估计函数有效减少异常值影响, 精准

确定模型参数, 提高匹配准确性.
 3.2.2    MLESAC

MLESAC 核心在于采用最大似然估计准则. 与
RANSAC算法主要关注内点数量不同, MLESAC从概

率视角评估模型假设. 它假定数据点服从特定概率分

布, 根据模型计算每个数据点属于内点的概率, 构建似

然函数衡量模型与数据整体拟合程度, 通过最大化似

然函数确定最优模型参数.
 3.2.3    LO-RANSAC

标准 RANSAC 在找到初始模型后停止, 而 LO-
RANSAC引入了局部优化环节. 当确定初始模型后, 从
该模型的内点集合中选取更多样本 (非最小子集)重新

计算模型参数, 通过多次迭代优化, 逐步提升模型对内

点的拟合程度, 降低噪声影响, 使模型更精准反映数据

真实结构.
 3.2.4    RANSAAC

传统 RANSAC方法虽能处理异常值, 但存在诸多

缺点, 如结果准确性和稳定性不足、参数设置困难等.
其中最重要的一点, RANSAC 的目的是找到最佳模型

的单一样本. 尽管在某些情况下这可能是准确的, 但它

忽略了在整个迭代过程中可能生成的其他全内点模型,
而这些模型可以用于提高最终的准确性. RANSAAC
结合随机样本共识与统计方法, 通过聚合所有生成的

假设, 提高 2D 变换估计的准确性和稳定性, 同时保持

较低的计算成本. 作为该方法参数的源点取决于正在

估计的全局变换, 基数应至少等于最小样本大小 (MSS).
该方法选择能够唯一确定所需变换并使模型生成所引

起的噪声最小化的点, 例如, 对于单应性变换, 应选择
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图像角落的 4 个点. 聚合策略有加权平均和加权几何

中位数 (可用Weiszfeld[42]算法来计算)两种. 出现新最佳

假设时执行局部优化, 取内点非最小样本计算模型, 然后

采用贪婪策略优化结果, 返回内点最多模型. RANSAAC
仅聚合局部优化后的假设, 提高准确性且减少处理时

间. 与传统方法相比, 准确性平均提高了 2–3 倍, 尤其

是在噪声较大、可用内点更多以及外点比例较高的情

况下, 优化更为显著.
 3.2.5    MAGSAC++

传统 RANSAC模型质量评估方式较为简单, 主要

依赖内点计数或固定阈值判断, 这使得在处理复杂数据

时, 结果准确性和稳定性欠佳, 对测量噪声较为敏感, 且
参数设置困难, 难以适应不同的数据特性. MAGSAC++
引入一种新的模型质量 (评分) 函数, 该函数基于数据

点残差分布的假设, 通过积分计算权重, 无需明确区分

内点和外点, 能更全面地评估模型质量. 同时, 采用一

种新颖的边缘化过程, 将其表述为新型 M-估计器, 并
通过迭代加权最小二乘法求解. 此外, 作者还提出了

Progressive NAPSAC 采样器. 它假设邻近点可能属于

同一模型, 初始从局部采样, 逐渐过渡到全局采样. 其
具体采样过程为, 首先通过 PROSAC 策略选择第一个

定位点, 其余点根据距离从局部邻域选取, 邻域大小依

据数据动态增长. 在采样过程中, 计算邻域增长函数和

样本命中数. 作者将新采样器和 MAGSAC++结合, 在
6 个世界公开真实数据集上进行单应性和基本矩阵的

拟合测试. 与 RANSAC、LMedS、MSAC、MAGSAC
等方法相比, MAGSAC++在准确性、速度等方面表现

出色.
 3.2.6    GCSAC

从三维点云数据估计几何模型参数在计算机视觉

中具有重要意义, 但 RANSAC 计算成本高, 在数据有

噪声和异常值时面临挑战. GCSAC 利用几何约束在

RANSAC 中寻找优质样本, 提高采样点质量和估计模

型精度的方法. 该方法采用自适应 RANSAC 思想初

步选择样本, 初始内点率设为 0.1, 以方便找到估计模

型候选. 优质样本需满足两个条件: 一是所选样本必须

与估计模型一致, 二是其必须满足所寻找物体的几何

约束. 在获得新的假设模型后, 采用 MLESAC 算法的

负对数似然准则评估和更新最佳估计模型. 终止条件

与自适应 RANSAC一致, 根据当前估计的内点率更新

迭代次数, 若新的迭代次数小于已执行的次数, 则终止

算法.
 3.2.7    Recursive RANSAC

Recursive RANSAC可以递归估计多个信号参数且

无需预先知晓真实信号数量. 相较于传统的 RANSAC
算法, Recursive RANSAC在每次扫描时采用了独特的

处理策略. 具体而言, 对于新的观测值, 首先检验其是

否为前一次扫描所构建模型的内点. 若判定为内点, 则
借助递归最小二乘法 (RLS) 对前一模型予以更新; 反
之, 若为外点, 则运用 RANSAC 算法来探寻新的模型

参数. 此外, 为实现对多个模型的有效跟踪, 在内存中

构建并存储一组模型, 并依据特定规则开展模型的更

新、替换以及筛选等一系列操作. 经由这种递归机制,
Recursive RANSAC 算法在每次扫描进程中借助新观

测值, 对多个潜在信号的模型参数展开持续更新与优

化操作, 在应对此类潜在信号参数估计问题时, 显著提

升了算法的效率与适应性表现.
 3.2.8    Latent RANSAC

传统 RANSAC 基于随机采样与一致性检验执行

模型参数估计. 然而, 在数据呈现复杂隐藏结构的情形

下, 其精准定位最优模型的能力受限. Latent RANSAC
是一种能够在恒定时间区间内估计模型的策略, 此估

计过程与数据集规模无涉. 作者指出, 正确的假设在潜

在参数域中呈现紧密聚集态势, 故而可借助类似广义

霍夫变换 (generalized Hough Transform, GHT)[43–45]的
方法予以聚类定位, 且与广义霍夫变换的随机化版本

(randomized Hough Transform, RHT)[46]具有更高的相

似性, 其中, 成功完成搜索需累计超过两次的投票操作.
这里的搜索策略选择的是随机网格搜索[47], 可以快速

定位相似假设对. 据此, 计算资源消耗显著的假设验证

阶段仅在检测到一对相似假设时启动, 并且作者表明,
当假设处于错误状态时, 该相似假设对出现的概率处

于极低水平. 通过考虑潜在变量, Latent RANSAC 能够

挖掘数据中的隐藏信息, 从而构建更准确的模型. 在处

理复杂的数据, 如含有大量噪声和异常值的图像或传

感器数据时, 它可以更好地拟合数据的真实结构.
 3.2.9    LRTSAC

I

LRTSAC是一种基于似然比检验来稳健估计模型

参数的方法, 作者的目的是解决异常值情况下的模型

估计问题, 特别是当内点噪声水平未知时. 作者通过将

模型参数和内点噪声水平联合优化, 利用似然比检验

统计量作为目标函数, 合理控制 型错误, 同时提出早
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期停止策略提高效率. 具体而言, 通过定义数据的混合

分布模型, 计算似然比检验统计量来判断数据集是否

符合某种假设分布, 进而确定模型参数; 在优化过程中,
对模型参数随机采样, 对噪声水平穷举评估; 通过计算

采样迭代次数和最小内点比例, 确定噪声水平搜索范

围并自适应调整迭代次数; 利用基于 Hoeffding不等式

浓度界的早期停止策略加速模型验证. 在处理 3D平面

估计、单应性估计和基础矩阵估计等问题时, 与传统

RANSAC相比, 其准确性相当, 但运行速度更快.
 3.3   假设验证改进

Td,d 3.3.1    RRANSAC-

Td,d

d d≪ N

d

N −d

d

RANSAC 中的假设检验步骤计算代价很高. 在基

于图像的三维重建场景中, 从不同视角拍摄的城市地

标建筑图像集规模可达百万级. 每张照片可能包含数

千个特征点, 整体数据集的特征点数量可达数百万, 计
算代价极高. 因此, 作者引入了 测试, 在模型验证阶

段, 并非对所有数据点直接验证模型假设, 而是先从数

据集中随机选取 个数据点 ( ,  N 为数据点总

数)进行初步测试. 若 个点均符合模型 (即被判定为内

点), 再进一步对剩余 个点进行验证; 否则, 立即舍

弃该模型假设并重新采样生成新假设. 此策略通过早

期排除大量劣质模型, 减少不必要的计算开销.  的值

用式 (8)计算:

d∗ =
ln

(
lnε(tM +1)

N(lnδ− lnε)

)
lnδ

(8)

tM

δ ε

d dopt

{⌊d∗⌋ ,⌈d∗⌉}

其中,  是计算从样本中得出模型参数所需的时间,
是数据点与随机模型一致的概率,  是数据中异常值

所占的比例. 由于 是正整数, 所以最优测试点数 ,
在 中选择, 且必须大于 0.
 3.3.2    RRANSAC-BO

n

ε ε

在传统 RANSAC中, 会进行多次随机采样和模型

评估, 直到达到预设的迭代次数或者找到足够好的模

型. 然而, 这种方式可能会导致不必要的计算, 尤其是

在已经明显知道当前采样不会产生更好结果的情况下.
该方法定义了一种简单的早期跳出测试. 在这种测试

中, 如果一个假设当前的得分无法超越到目前为止所

测试过的最佳假设的得分, 那么就不再针对剩余数据

对该假设做进一步的检查. 接着, 作者提出了另一种测

试方法. 在该测试中, 会随机选取一个大小为 的子集

进行评估, 并计算出这个子集中内点的比例 . 如果 明

εbest

εbest

显小于到目前为止所找到的最佳内点比例 , 那么对

其余数据点进行评估从而得到比 更好结果的可能

性就非常小. 此时便可以提前终止对该假设的评估, 以
避免不必要的计算.
 3.3.3    RRANSAC-SPRT

1−η
λi

利用 RANSAC进行计算时, 通常需要估计内点比

例. 而该方法提出了一种不需要估计内点比例的方法,
作者基于Wald的序列决策理论[48], 推导出了一个能以

的置信度生成解决方案的过程. Wald 的序贯概率

比检验基于似然比 :

λi =

i∏
r=1

p (xr |Hb)

p
(
xr |Hg

) = λi−1 ·
p (xi|Hb)

p
(
xi|Hg

) (9)

Hg

Hb

xr r

xr

P
(
1|Hg

)
ε

P (1|Hb)

δ

δ

ε

ε

其中,  是模型良好的假设, 也就是说, 该模型是由仅

由内点组成的样本计算得出的; 而 则对应于模型是

不良的备择假设. 对于 , 当且仅当第 个数据点与评

估的模型一致时,  的值为 1, 否则为 0. 与“好”模型一

致的概率 通过数据点中的内点比例 近似, 而

与“坏”模型一致的概率 被建模为伯努利分布,
其参数为 . 由于大多数测试模型都是“坏”的, 因此可

以通过拒绝的模型中一致数据点的平均比例来估计 .
的精确值无法获取, 但可以用当前已知的最大支持度

来给出 的一个下界. 该方法摒弃了对数据内点比例等

先验知识的依赖, 且在模型验证过程中, 借助序贯概率

比检验对可能的“坏”模型进行早期判断, 避免了针对

此类模型的无效假设检验 ,  显著提升了模型估计的

速率.

 4   实验分析

在本节中, 本文将评估 RANSAC及其相关变体在

影像匹配应用中的性能表现, 通过各个算法的实验比

较, 深入分析 RANSAC 的优势与不足, 并探索其在实

际应用中的可行性和局限性.
 4.1   比较方法介绍

RANSAC: 标准 RANSAC算法, 如算法 1所述.
PROSAC: 采用渐进式采样, 优先选择高质量数据

点构建模型假设, 加快模型收敛速度.
MAGSAC++: 运用基于评估数据点可靠性的自适

应评分和加权机制, 提升算法的鲁棒性和准确性, 能更

精准地处理含噪声和异常值的数据.
LO-RANSAC: 对初始模型进行局部优化, 从初始
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模型的内点集合中选取更多样本重新计算模型参数,
以提高对复杂数据的准确性.

GCSAC: 有效利用几何约束寻找优质样本, 在对

几何敏感的场景中实现更精确的模型拟合, 能有效利

用几何约束寻找优质样本, 提高采样点质量和估计模

型精度.
Td,d dRRANSAC- : 通过在模型验证阶段随机选 个

数据点进行初步测试来排除劣质模型, 减少计算开销.
RRANSAC-SPRT: 通过序贯概率比检验判断模型,

不依赖内点比例等先验知识, 早期判断“坏”模型避免

无效假设检验, 提升模型估计速率.
 4.2   数据集

本文采用了 Hpatches[49] (https://github.com/hpatches/
hpatches-dataset) 和 Homogr[50] (https://cmp.felk.cvut.
cz/data/geometry2view/index.xhtm)数据集. 为了全面且

深入地对算法性能进行分析, 我们将实验分为定性和

定量两个部分.
在定性分析部分, 我们选取 7组真实图像 (见表 2),

依次为: Vard、Wounded、Wall、Wormhole、Boat、
BostonLib、City. 其中前 4 组是 Hpatches 数据集中的

图像, 后 3组是 Homogr数据集中的图像.
 
 

表 2    7组图像的信息
 

图像名 图像 匹配数 内点率 (%)

Vard 3 418 88.00

Wounded 760 75.13

Wall 501 62.87

Wormhole 550 22.18

Boat 783 29.24

BostonLib 1 308 30.88

City 159 62.89

 

在定量分析阶段, 考虑到结果的准确性和普遍性,
我们使用 Hpatches (300对)和 Homogr (16对)两个数

据集, 对比了 RANSAC及其变体的准确率和均方根误

差, 对比结果见图 4.
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 (a) 在两个数据集上准确率的比较结果
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 (b) 在两个数据集上均方根误差的比较结果 
图 4    7种方法的定性实验分析

 

 4.3   评价指标

η所有实验的最大迭代次数均为 5 000, 置信度 设

置为 0.99, 在匹配过程中使用 SIFT特征点和描述方式,
在定性实验部分, 本文选取了 4个评价指标.

I找到的内点数 : 内点数越多, 说明算法对数据中

有效信息的提取能力越强, 模型的可靠性可能越高.
model生成的模型数 : 反映了算法在迭代过程中生

成模型的频繁程度, 模型数过多可能意味着算法在寻

找最优模型时的效率较低.
vpm每个模型的验证次数 : 体现了对每个模型进行

验证的工作量, 验证次数越高, 计算成本越大.
time运行时间  (ms): 直观地反映了算法的计算效

率, 运行时间越短, 算法在实际应用中的实时性和可用

性可能越高, 尤其在处理大规模数据或对时间敏感的

场景中, 运行时间是一个关键的性能指标.
在定量分析阶段, 本文选取了 2 个评价指标来比

较方法性能.
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H

准确率 (Accuracy): 反映了算法对真实匹配点的识

别能力与模型拟合精度. 首先对方法返回的内点集合

中的点进行齐次化处理, 通过与真实单应性矩阵 相

乘得到变换后的齐次坐标点, 归一化后计算该坐标点

与对应目标点的欧氏距离, 当且仅当该距离小于 3 像

素时, 判定为有效匹配. 准确率即为有效匹配点占内点

集合总数的百分比.

N i(
xp

i ,y
p
i

)
均方根误差 (RMSE): 用于衡量模型预测值与真实

值之间的偏差程度. 假设存在 组点对, 第 个匹配点对

在经过模型变换后的预测坐标为 , 实际观测坐

(
xt

i,y
t
i

)
标为 , 则均方根误差为:

RMSE =

√√∑N

i=1

(
xp

i ,y
p
i

)2−
(
xt

i,y
t
i

)2

N
(10)

均方根误差的值越小, 说明模型预测值与真实值

之间的偏差越小, 模型对数据的拟合效果越好, 模型的

准确性越高.

Td,d

RANSAC、PROSAC、MAGSAC++、LO-RANSAC、

GCSAC、RRANSAC- 、RRANSAC-SPRT 这 7 种

方法在真实图像上的实验结果比较见表 3.
 
 

表 3    7种方法在 7组真实图像上的比较结果
 

图像 指标 RANSAC PROSAC GCSAC MAGSAC++ LO-RANSAC Td,dRRANSAC- RRANSAC-SPRT

Vard

I
model
vpm
time

2 960
33
3 418
21.09

2 807
7

3 418
2.94

2 600
11
3 418
2.50

2 616
12
3 418
14.18

3 011
8

3 418
7.03

2 805
64
2

14.25

2 858
8
1

45.86

Wounded

I
model
vpm
time

557
12
760
16.40

519
18
760
3.07

571
13
760
2.41

546
22
760
2.32

551
14
760
6.21

566
109
2

8.58

532
32
6

6.70

Wall

I
model
vpm
time

256
33
501
17.84

263
41
501
5.38

287
25
501
4.31

290
22
501
2.86

290
34
501
6.99

253
232
2

9.45

268
22
4

6.29

Wormhole

I
model
vpm
time

187
343
550
59.80

156
812
550
97.34

192
380
550
22.16

148
897
550
25.82

176
436
550
28.86

141
1 782
21

25.64

147
814
13

24.56

Boat

I
model
vpm
time

333
167
783
38.09

327
149
783
19.87

314
175
783
11.52

309
311
783
10.54

328
147
783
14.19

360
3 272
253
28.67

288
168
7

6.43

BostonLib

I
model
vpm
time

430
392
1 308
92.86

458
304
1 308
47.93

454
488
1 308
29.70

426
555
1 308
19.79

458
775
1 308
44.71

459
5 000
179
75.45

458
230
6

25.89

City

I
model
vpm
time

98
30
159
16.36

98
29
159
4.55

100
27
159
3.19

88
46
159
2.81

97
30
159
6.88

101
511
4

12.41

99
31
3

6.59
 

 4.4   结果分析

在对多种方法的性能比较中, PROSAC 方法展现

出自身的独特. 其采用的渐进式采样策略使得在模型

假设生成阶段能够快速地聚焦于更有可能的样本组合,
从而在计算速度上相较于 RANSAC 有了显著的提升,
能够在较短的时间内完成模型的初步估计和迭代过

程.然而, 这种快速收敛的方式可能导致其在搜索内点

的过程中不够全面和深入, 使得最终返回的内点数可

能较低. 虽然 PROSAC能够快速地给出一个模型估计,
但该模型所涵盖的内点数量相对较少, 可能在模型的

准确性和鲁棒性方面存在问题, 尤其在对数据内点比

例要求较高的应用场景中, 其性能可能会受到一定的

影响.
LO-RANSAC、MAGSAC++和 GCSAC这 3种方

法在寻找内点的能力上水平相近. 它们在处理数据时,
都能够有效地识别出数据中的内点, 从而得到数量相
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近的内点集合. 例如, MAGSAC++利用自适应的评分

和加权机制, 能够根据数据点的可靠性进行精准的内

点判断; GCSAC 则借助几何约束关系, 从数据的几何

结构出发, 准确地筛选出符合模型的内点. 不过, 在计算

效率方面, LO-RANSAC相较于MAGSAC++和 GCSAC
存在劣势, 其速度较慢. LO-RANSAC的局部优化过程

虽然有助于提高模型的准确性, 但在大规模数据的应

用场景中, 其较长的计算时间可能成为一个关键的瓶

颈. 这是因为它需要在局部区域内对模型进行反复的

优化和验证, 涉及更多的计算资源和时间开销. 相比之

下, MAGSAC++和 GCSAC在保证内点数量的同时, 能
够以相对更快的速度完成模型的估计和内点的搜索过

程, 在计算效率和准确性之间实现了更好的平衡.
Td,d

Td,d

RRANSAC- 、RRANSAC-SPRT 这两种方法

在模型验证阶段进行了优化.  测试基于随机选点初

步测试机制, 早期排除劣质模型, 大幅削减验证次数.
RRANSAC-SPRT基于序贯概率比检验高效判断模型,
在保证准确性同时减少验证开销 .  由于模型验证在

RANSAC 中计算资源消耗巨大, 这两种方法因验证次

数的大幅降低, 均获得极大的速度提升.
在图 4中可以看到, RRANSAC-SPRT的均方根误

差是最低的, 但是准确率低于MAGSAC++、GCSAC、
LO-RANSAC.

 5   总结与展望

本文以假设生成、模型精化、假设验证为分类标

准介绍了现有 RANSAC变体并分析了它们的性能. 下
面将从方法思路总结、现存挑战及未来方向 3个方面

进行总结.
(1) 在假设生成方面, 现有的 RANSAC 改进主要

是优化采样策略, 提高采样质量和效率, 提高采样到内

点的概率, 进而加速模型收敛. 比如 PROSAC依据数据

点质量排序, 优先选择高质量点构建模型假设; NAPSAC
利用数据点的空间分布特性, 在超球体内选取邻接数

据点, 增加内点采样概率; Guided-MLESAC 借助引导

信息, 优先选择可能的内点样本; GASAC 运用遗传算

法全局搜索模型参数空间; NG-RANSAC 通过神经网

络学习数据特征, 预测数据点构建正确模型的概率来

指导采样. 但现有改进方法在样本点质量判定和内点

概率预测上缺乏精准方法. 不同场景下数据特性差异

大, 难以找到通用、准确的判定与预测方式, 影响采样

质量和模型收敛速度. 如在复杂 3D场景重建的高维点

云数据中, 数据分布复杂且存在大量噪声和异常值, 准
确判断样本点质量和内点概率变得极为困难. 因此, 未
来可结合多源信息、机器学习及深度学习技术, 精确

度量样本点质量、预估内点概率, 尝试把点云数据的

几何特征、语义信息跟深度学习模型相结合, 精确指

导采样, 实现模型快速收敛.
(2) 在模型精化方面, 现有的 RANSAC 改进大多

围绕优化模型参数估计、降低噪声和异常值影响展开.
MSAC利用M估计函数, 依据数据点与模型的契合程

度分配权重, 减少异常值在模型估计中的权重; MLESAC
从概率视角出发, 通过最大化似然函数确定最优模型

参数; LO-RANSAC 在找到初始模型后进行局部优化,
重新计算模型参数, 提升模型对数据的拟合度. 但现有

方法进行参数估计时对噪声敏感, 易陷入局部最优. 未
来可结合贝叶斯非参数建模自适应学习噪声分布, 通
过流形约束优化实现全局结构一致性, 或设计相关深

度神经网络, 突破传统精化方法对噪声分布的强假设

限制, 提升复杂场景下的模型精度与计算效率.

Td,d

(3) 在假设验证方面, 现有的 RANSAC 改进聚焦

于优化假设检验步骤, 避免后续模型精化不必要的计

算开销, 提高估计的可靠性. 如 测试通过随机选取

部分数据点初步测试模型, 早期排除劣质模型; Bail-
Out Test定义早期跳出测试, 避免对低质量模型的无效

验证; RRANSAC-SPRT 借助序贯概率比检验, 在不依

赖内点比例先验知识的情况下, 早期判断“坏”模型, 减
少无效假设检验. 尽管现有改进方法在减少计算开销

和提高估计可靠性上取得一定进展, 但在大规模数据

和实时性要求高的场景中, 假设验证效率仍需提升. 例
如在三维重建等涉及海量数据的应用中, 即使采用了

上述优化方法, 计算负担依然较重. 为此, 需构建更高

效的假设验证方法, 用少量数据点精准预估模型质量.
未来可结合数据挖掘与信息论, 挖掘关键信息, 快速判

断模型好坏, 减少无效假设检验, 提升 RANSAC 效率;
或探索基于主动学习的策略, 动态选取信息量足的数

据点用于模型验证, 以适配复杂应用场景需求.
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